题目

给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1

],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改

变后的a继续回答上面的问题。

输入格式

第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。

分别表示序列的长度和指令的个数。

第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。

接下来的m行描述每条指令

每行的格式是下面两种格式中的一种。

Q i j k 或者 C i t

Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)

表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。

C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t

m,n≤10000

输出格式

对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。

输入样例

5 3

3 2 1 4 7

Q 1 4 3

C 2 6

Q 2 5 3

输出样例

3

6

题解

很裸的板

树状数组维护区间,主席树维护树状数组每个节点权值信息

【debug弄得要死,调用时(1,tot)写成了(l,r) QAQ】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 10005,maxm = 10000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int rt[maxn],A[maxn],B[2 * maxn],n,m,tot = 1,siz,N;
int sum[maxm],ls[maxm],rs[maxm],a[2][20];
struct Que{int opt,l,r,k;}Q[maxn];
int getn(int x){
int l = 1,r = tot,mid;
while (l <= r){
mid = l + r >> 1;
if (B[mid] < x) l = mid + 1;
else r = mid - 1;
}
return l;
}
void update(int& u,int l,int r,int pos,int v){
if (!u) u = ++siz; sum[u] += v;
if (l == r) return;
int mid = l + r >> 1;
if (mid >= pos) update(ls[u],l,mid,pos,v);
else update(rs[u],mid + 1,r,pos,v);
}
int query(int l,int r,int k){
if (l == r) return l;
int mid = l + r >> 1,t = 0;
for (int i = 1; i <= a[0][0]; i++) t += sum[ls[a[0][i]]];
for (int i = 1; i <= a[1][0]; i++) t -= sum[ls[a[1][i]]];
if (t >= k){
for (int i = 1; i <= a[0][0]; i++) a[0][i] = ls[a[0][i]];
for (int i = 1; i <= a[1][0]; i++) a[1][i] = ls[a[1][i]];
return query(l,mid,k);
}else {
for (int i = 1; i <= a[0][0]; i++) a[0][i] = rs[a[0][i]];
for (int i = 1; i <= a[1][0]; i++) a[1][i] = rs[a[1][i]];
return query(mid + 1,r,k - t);
}
}
void add(int u,int x,int v){while (u <= n) update(rt[u],1,tot,x,v),u += lbt(u);}
int solve(int l,int r,int k){
a[0][0] = a[1][0] = 0;
for (int i = r; i; i -= lbt(i)) a[0][++a[0][0]] = rt[i];
for (int i = l - 1; i; i -= lbt(i)) a[1][++a[1][0]] = rt[i];
return query(1,tot,k);
}
int main(){
n = read(); m = read(); char c;
REP(i,n) A[i] = B[++N] = read();
REP(i,m){
c = getchar(); while (c != 'Q' && c != 'C') c = getchar();
if (c == 'Q') Q[i].opt = 0,Q[i].l = read(),Q[i].r = read(),Q[i].k = read();
else Q[i].opt = 1,Q[i].l = read(),Q[i].k = B[++N] = read();
}
sort(B + 1,B + 1 + N);
for (int i = 2; i <= N; i++) if (B[i] != B[tot]) B[++tot] = B[i];
REP(i,n) A[i] = getn(A[i]),add(i,A[i],1);
REP(i,m){
if (!Q[i].opt) printf("%d\n",B[solve(Q[i].l,Q[i].r,Q[i].k)]);
else{
Q[i].k = getn(Q[i].k);
add(Q[i].l,A[Q[i].l],-1);
A[Q[i].l] = Q[i].k;
add(Q[i].l,A[Q[i].l],1);
}
}
return 0;
}

BZOJ1901 Zju2112 Dynamic Rankings 【树状数组套主席树】的更多相关文章

  1. BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树

    [题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...

  2. P2617 Dynamic Rankings(树状数组套主席树)

    P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...

  3. ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解

    题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...

  4. LUOGU P2617 Dynamic Rankings(树状数组套主席树)

    传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...

  5. BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

    [题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...

  6. BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树

    BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树 Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排 ...

  7. [COGS257]动态排名系统 树状数组套主席树

    257. 动态排名系统 时间限制:5 s   内存限制:512 MB [问题描述]给定一个长度为N的已知序列A[i](1<=i<=N),要求维护这个序列,能够支持以下两种操作:1.查询A[ ...

  8. BZOJ 2141 排队(树状数组套主席树)

    解法很多的题,可以块套树状数组,可以线段树套平衡树.我用的是树状数组套主席树. 题意:给出一段数列,m次操作,每次操作是交换两个位置的数,求每次操作后的逆序对数.(n,m<=2e4). 对于没有 ...

  9. 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】

    题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...

  10. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

随机推荐

  1. python_78_软件目录结构规范

    一定要看http://www.cnblogs.com/alex3714/articles/5765046.html #print(__file__)#打印的是文件的相对路径 import os pri ...

  2. python_77_json与pickle序列化3

    #此方法:dump多次,而不可以load多次,只能load一次,否则会出错 只有序列化,无反序列化 import json info={ 'name':'Xue Jingjie', 'age':22, ...

  3. js表单序列化时,非空判断

    在项目中,对于数据的传输一般需要非空的判断,而数据字段较多时一般直接将表单序列化,此时如何判断非空,如下 因为将表单序列化时,数据格式为 trainKind=1&trainKindCode=1 ...

  4. C#自增运算符(++)

    一.C#自增运算符(++) 自增运算符(++)是将操作数加1. 1. 前缀自增运算符 前缀自增运算符是“先加1,后使用”.它的运算结果是操作数加1之后的值. 例如: ++x;  // 前缀自增运算符 ...

  5. iOS多播Delegate类——GCDMulticastDelegate用法小结

    iOS中通常的delegate模式只能有一个被委托的对象,这样当需要有多个被委托的对象时,实现起来就略为麻烦,在开源库XMPPFramework中提供了一个GCDMulticastDelegate类, ...

  6. Vue 父组件传值到子组件

    vue 父组件给子组件传值中 这里的AccessList就是子组件 如果 是静态传值的话直接  msg="xxx"就好 这里动态取值的话就  :msg=xxxxx ________ ...

  7. jsp 生成验证码代码

    调用方法:在jsp页面用图像标签便可以直接调用如下是标签代码<img border=0 src="image.jsp">,只需要把该代码发在验证码要显示的区域就可以了) ...

  8. nginx安装与部署

    1:安装工具包 wget.vim和gcc yum install -y wget yum install -y vim-enhanced yum install -y make cmake gcc g ...

  9. goaccess 安装

    今天尝试搭建goaccess,用于分析access.log文件,但安装并不顺利,小记一下自己遇到的问题及解决方法 系统环境:CentOS release 6.9 一.参照官网教程进行搭建 $ wget ...

  10. Window_Bat_Scripts—检测特定网段未使用的IP地址

    1.1    脚本名称 Check_IP_Not_Use.bat 1.2    脚本代码 @Echo off set /p input_number=请输入网络位(192.168.1.): IF EX ...