hdu6134[莫比乌斯反演] 2017多校8

/*hdu6134[莫比乌斯反演] 2017多校8*/
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = ;
const int maxn = + ;
LL f[maxn], g[maxn], d[maxn];
bool vis[maxn];
int prime[maxn], primes, mu[maxn];
void init_mu()
{
memset(vis, , sizeof(vis));
mu[] = ;
primes = ;
for (int i = ; i < maxn; i++)
{
if (!vis[i]) {
prime[primes++] = i;
mu[i] = -;
}
for (int j = ; j < primes && i * prime[j] < maxn; j++)
{
vis[i * prime[j]] = ;
if (i % prime[j]) mu[i * prime[j]] = -mu[i];
else { mu[i * prime[j]] = ; break;}
}
}
}
void init() {
init_mu();
for (int i = ; i < maxn; i++) {
for (int j = i; j < maxn; j += i) {
d[j]++;
if (d[j] > MOD) d[j] -= MOD;
}
}
g[] = ;
for (int i = ; i < maxn; i++) {
g[i] = (g[i - ] + d[i - ] + ) % MOD;
}
for (int i = ; i < maxn; i++) {
for (int j = i; j < maxn; j += i) {
f[j] = (f[j] + mu[i] * g[j / i] % MOD) % MOD;
}
}
for (int i = ; i < maxn; i++) {
f[i] = (f[i - ] + f[i]) % MOD;
}
}
int main() {
init();
int n;
while (~scanf("%d", &n)) {
printf("%lld\n", f[n]);
}
return ;
}
hdu6134[莫比乌斯反演] 2017多校8的更多相关文章
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- 2017 多校2 hdu 6053 TrickGCD
2017 多校2 hdu 6053 TrickGCD 题目: You are given an array \(A\) , and Zhu wants to know there are how ma ...
- 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
随机推荐
- POJ 1742 Coins(多重背包,优化)
<挑战程序设计竞赛>上DP的一道习题. 很裸的多重背包.下面对比一下方法,倍增,优化定义,单调队列. 一开始我写的倍增,把C[i]分解成小于C[i]的2^x和一个余数r. dp[i][j] ...
- hdu-1856 More is better---带权并查集
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1856 题目大意: 一个并查集 计算每个集合的元素 找出元素最多的那个集合,输出元素的个数 解题思路: ...
- Android(java)学习笔记96:layout_weight使用注意事项
1. android:layout_weight使用说明: layout_weight是权重的意思,也就是各个控件所占的比重,用在LinearLayout布局中.当我们使用layout_weight的 ...
- vuejs数据和事件
<body> <div id='root'>{{number}}</div> <script> new Vue({ el:'#root', data:{ ...
- python_65_生成器1
# map()函数 # map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. # 例 ...
- Linux学习记录(三)
1.Linux的软件安装 1.1.jdk安装 注意:rpm与软件相关命令 相当于window下的软件助手 管理软件 步骤: 1)查看当前Linux系统是否已经安装java 输入 rpm -qa | g ...
- java基础面试题:switch语句能否作用在byte上,能否作用在long上,能否作用在String上?
package com.swift; public class Switch_Test { public static void main(String[] args) { /* * switch语句 ...
- mybatis的环境搭建
mybatis是一个持久层框架,其主要思想就是想将程序中大量的SQL语句剥离出来,配置在配置文件中,实现SQL的灵活配置. 使得SQL与程序代码分离,即在不修改程序代码的情况下,直接在配置文件中修改S ...
- 用dump为什么总会在前面出现/path/debug.php:193
解决方案,在php.ini中的xdebug中加一行代码:xdebug.overload_var_dump=1
- jQuery的select2下拉框的搜索功能(使用select2插件,方便简单)
第一步: 引入我们用使用的插件 jquery: select2: css: js: 第二步: 创建一个html页面,body内容: <div> <select class=" ...