http://www.indiana.edu/~p1013447/dictionary/lat_i.htm

【This means that neighboring visual neurons respond LESS if they are activated at the same time than if one is activated alone. So the fewer neighboring neurons stimulated, the more strongly a neuron responds. 该神经元周围的同时被刺激的神经元数目越少,该神经元的响应就越显著。】

Lateral inhibition refers to the inhibition that neighboring neurons in brain pathways have on each other. For example, in the visual system, neighboring pathways from the receptors to the optic nerve, which carries information to the visual areas of the brain, show lateral inhibition. This means that neighboring visual neurons respond LESS if they are activated at the same time than if one is activated alone. So the fewer neighboring neurons stimulated, the more strongly a neuron responds.

You might expect that such inhibition would decrease the visual system's ability to represent information. In fact, this process greatly increases the visual system's ability to respond to edges of a surface. This happens because neurons responding to the edge of a stimulus respond more strongly than do neurons responding to the middle. The "edge" neurons receive inhibition only from neighbors on one side -- the side away from the edge. Neurons stimulated from the middle of a surface get inhibition from all sides.

【It makes edges stand out 强化边缘】

The pictures you see taken from space craft are computer enhanced by a process just like lateral inhibition. Computer transformation of the raw image makes neighboring points of the computerized image inhibit each other. This makes the very faint edges in the original image much sharper. This is why lateral inhibition is important: It makes edges stand out

lateral inhibition的更多相关文章

  1. Paper/ Overview | CNN(未完待续)

    目录 I. 基础知识 II. 早期尝试 1. Neocognitron, 1980 2. LeCun, 1989 A. 概况 B. Feature maps & Weight sharing ...

  2. AlexNet

    AlexNet学习笔记 目录 AlexNet整体结构 CNN 全连接 TensorFlow实现 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevs ...

  3. 思考卷积神经网络(CNN)中各种意义

    原文:https://blog.csdn.net/aimreant/article/details/53145063 思考卷积神经网络(CNN)中各种意义 只是知道CNN是不够,我们需要对其进行解剖, ...

  4. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  5. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  6. caffe 学习(3)——Layer Catalogue

    layer是建模和计算的基本单元. caffe的目录包含各种state-of-the-art model的layers. 为了创建一个caffe model,我们需要定义模型架构在一个protocol ...

  7. Local Response Normalization 60 million parameters and 500,000 neurons

    CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具. ImageNet Classification with Deep Convolutional Neur ...

  8. Image Processing and Analysis_8_Edge Detection:Statistical edge detection_ learning and evaluating edge cues——2003

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

随机推荐

  1. 反汇编->C++虚函数深度分析

    先来查看一简单例子 #include<iostream> using namespace std; class Base{ public: virtual void f() { cout ...

  2. Visual Studio Code 使用教程

    visual studio code以下简称vsc.vsc这个编辑器也火了一会了,最近在跟风学一波typescript,网络上很多人说vsc是最适合ts的编辑器,而且这个编辑器本身也很好用,所以学一下 ...

  3. Java 内存查看与分析

    1:gc日志输出 在jvm启动参数中加入 -XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCTimestamps -XX:+PrintGCApplication ...

  4. centos 目录

    http://www.iteye.com/topic/1125162 使用linux也有一年多时间了  最近也是一直在维护网站系统主机  下面是linux目录结构说明 本人使用的是centos系统,很 ...

  5. TreeSet, LinkedHashSet and HashSet 的区别

    1. 介绍 TreeSet, LinkedHashSet and HashSet 在java中都是实现Set的数据结构 # TreeSet的主要功能用于排序 # LinkedHashSet的主要功能用 ...

  6. Codeforces Round #317 [AimFund Thanks-Round] (Div. 2) Minimization dp

    原题链接:http://codeforces.com/contest/572/problem/D 题意 给你个数组A和n,k,问你排列A后,下面的最小值是多少. 题解 先排个序,要填充像1,1+k,1 ...

  7. kafka生产者客户端

    kafka的生产者 1. 生产者客户端开发 ​ 熟悉kafka的朋友都应该知道kafka客户端有新旧版本,老版本采用scala编写,新版本采用java编写.随着kafka版本的升级,旧版本客户端已经快 ...

  8. :jQuery实例【DEMO】

    前言: 今天2月最后一天,写一篇jQuery的几个实例,算是之前前端知识的应用.写完这篇博客会做一个登陆界面+后台管理(i try...) 一.菜单实例 最开始的界面: 点击菜单三后的界面:   二. ...

  9. 进程间通信IPC、LPC、RPC

    进程间通信(IPC,Inter-Process Communication),指至少两个进程或线程间传送数据或信号的一些技术或方法.进程是计算机系统分配资源的最小单位.每个进程都有自己的一部分独立的系 ...

  10. editplus重新载入文档

    editplus重新载入文档 :document->reload