CodeForces 392C Yet Another Number Sequence 矩阵快速幂
题意:
\(F_n\)为斐波那契数列,\(F_1=1,F_2=2\)。
给定一个\(k\),定义数列\(A_i=F_i \cdot i^k\)。
求\(A_1+A_2+ \cdots + A_n\)。
分析:
构造一个列向量,
\({\begin{bmatrix}
F_{i-1}i^0 &
F_{i-1}i^1 &
\cdots &
F_{i-1}i^k &
F_{i}i^0 &
F_{i}i^1 &
\cdots &
F_{i}i^k &
S_{i-1}
\end{bmatrix}}^T\)
转移到列向量:
\({\begin{bmatrix}
F_{i}i^0 &
F_{i}i^1 &
\cdots &
F_{i}i^k &
F_{i+1}i^0 &
F_{i+1}i^1 &
\cdots &
F_{i+1}i^k &
S_{i}
\end{bmatrix}}^T\)
上半部分直接复制到上面去即可,考虑下半部分:
\(F_{i+1}(i+1)^k=(F_{i-1}+F_i)(i+1)^k=F_{i-1}\left [ (i-1)+2 \right ]^k + F_i(i+1)^k=F_{i-1} \sum C_k^j (i-1)^j 2^{k-j} + F_i \sum C_k^j i^j\)
最后\(S_i=S_{i-1}+F_i i^k\)
预处理一下组合数,按照上面的系数构造矩阵即可。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const LL MOD = 1000000007;
const int maxsz = 90;
LL n;
int k, sz;
LL mul(LL a, LL b) { return a * b % MOD; }
LL add_mod(LL a, LL b) { a += b; if(a >= MOD) a -= MOD; return a; }
void add(LL& a, LL b) { a += b; if(a >= MOD) a -= MOD; }
struct Matrix
{
LL a[maxsz][maxsz];
Matrix() { memset(a, 0, sizeof(a)); }
Matrix operator * (const Matrix& t) const {
Matrix ans;
for(int i = 0; i < sz; i++)
for(int j = 0; j < sz; j++)
for(int k = 0; k < sz; k++)
add(ans.a[i][j], mul(a[i][k], t.a[k][j]));
return ans;
}
void output() {
printf("sz = %d\n", sz);
for(int i = 0; i < sz; i++) {
for(int j = 0; j < sz - 1; j++)
printf("%d ", a[i][j]);
printf("%d\n", a[i][sz - 1]);
}
}
};
Matrix pow_mod(Matrix a, LL p) {
Matrix ans;
for(int i = 0; i < sz; i++) ans.a[i][i] = 1;
while(p) {
if(p & 1) ans = ans * a;
a = a * a;
p >>= 1;
}
return ans;
}
LL C[45][45], a[maxsz];
void process() {
for(int i = 0; i <= 40; i++) C[i][i] = C[i][0] = 1;
for(int i = 2; i <= 40; i++)
for(int j = 1; j < i; j++)
C[i][j] = add_mod(C[i-1][j-1], C[i-1][j]);
}
int main()
{
process();
scanf("%lld%d", &n, &k);
sz = k * 2 + 3;
for(int i = 0; i <= k; i++) {
a[i] = 1;
a[i + k + 1] = ((1LL << (i + 1)) % MOD);
}
a[sz - 1] = 1;
Matrix M;
for(int i = 0; i <= k; i++) M.a[i][i + k + 1] = 1;
for(int i = 0; i <= k; i++)
for(int j = 0; j <= i; j++) {
M.a[i+k+1][j+k+1] = C[i][j];
M.a[i+k+1][j] = mul(C[i][j], ((1LL << (i - j)) % MOD));
}
M.a[sz-1][sz-2] = M.a[sz-1][sz-1] = 1;
M = pow_mod(M, n - 1);
LL ans = 0;
for(int i = 0; i < sz; i++)
add(ans, mul(M.a[sz-1][i], a[i]));
printf("%lld\n", ans);
return 0;
}
CodeForces 392C Yet Another Number Sequence 矩阵快速幂的更多相关文章
- Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)
题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
- Yet Another Number Sequence——[矩阵快速幂]
Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...
- HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)
Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...
- HDU - 1005 Number Sequence 矩阵快速幂
HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...
- HDU - 1005 -Number Sequence(矩阵快速幂系数变式)
A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...
- Yet another Number Sequence 矩阵快速幂
Let’s define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n ...
- SDUT1607:Number Sequence(矩阵快速幂)
题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1607 题目描述 A number seq ...
- LightOJ 1065 - Number Sequence 矩阵快速幂水题
http://www.lightoj.com/volume_showproblem.php?problem=1065 题意:给出递推式f(0) = a, f(1) = b, f(n) = f(n - ...
随机推荐
- SyntaxError: Use of const in strict mode.
具体报错console c:\Users\Administrator\WebstormProjects\blogtest\node_modules\connect-mongo\src\index.js ...
- jdk1.6与jdk1.7list集合排序区别与算法
源码分析: 在Collections.sort中: public static <T extends Comparable<? super T>> void sort(L ...
- UI2_异步下载
// AppDelegate.m // UI2_异步下载 // // Created by zhangxueming on 15/7/17. // Copyright (c) 2015年 zhangx ...
- AJPFX总结Java 类加载器
顾名思义,类加载器(class loader)用来加载 Java 类到 Java 虚拟机中.一般来说,Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java ...
- 利用mysqldump备份magento数据库
在Magento开发和维护过程中,经常需要将Magento的数据库导出.导入,这些工作可以通过mysqldump这个工具来实现. 下面我来简单介绍一下mysqldump在导出导入Magento dat ...
- GoDaddy网站程序根目录 网站文件上传到虚拟主机哪个目录
用的linux虚拟主机,网站根目录为public_html,(window主机的目录为httpdocs)我们需要把本地做好的网站上传到此目录下 cPanel控制面板 - 文件管理器 - public_ ...
- uvm_reg_predictor——寄存器模型(十七)
这是寄存器模型类中唯一派生自uvm_component的类,我们的寄存器模式需要实时,以最接近的方式知道DUT中寄存器的变化,uvm_reg_predictor就是为这个而生的. // TITLE: ...
- POJ 2288 Islands and Bridges (状压DP,变形)
题意: 给一个无向图,n个点m条边,每个点有点权,要求找到一条哈密顿路径,使得该路径的f(path)值最大.输出f值,若有多条最大f值的路径,输出路径数量. f值由如下3点累加而来: (1)所有点权之 ...
- 洛谷 P1903 【模板】分块/带修改莫队(数颜色)
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- External Pricing in C4C and ERP
从下图可以看出,C4C的Opportunity,Sales Quote和Sales Order这些business transaction没有自己的pricing engine,使用的是在ERP Pr ...