UVA-12293(组合游戏)
题意:
有两个相同的盒子,一个盒子里面有n个球,另一个盒子里面有1个球,每次清空球较少的那个盒子,然后从另外的一个盒子里拿到空盒子里使得操作后两个盒子至少有一个球,判断是先手还是后者胜;
思路:
跟每次拿走至少一个且不超过一半那个一样的sg函数;
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
//#include <bits/stdc++.h>
#include <stack> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=2e6+10;
const int maxn=500+10;
const double eps=1e-8; int get_sg(int x)
{
if(x%2==0)return x/2;
return get_sg(x/2);
}
int main()
{
int n;
while(1)
{
read(n);
if(n==0)break;
if(get_sg(n))printf("Alice\n");
else printf("Bob\n");
} return 0;
}
UVA-12293(组合游戏)的更多相关文章
- Nim游戏(组合游戏Combinatorial Games)
http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...
- UVA 12293 - Box Game(博弈)
UVA 12293 - Box Game 题目链接 题意:两个盒子,一開始一个盒子有n个球.一个仅仅有1个球,每次把球少的盒子中球消掉,把多的拿一些球给这个盒子.最后不能操作的输(球不能少于1个),A ...
- HDU 1536 S-Nim (组合游戏+SG函数)
题意:针对Nim博弈,给定上一个集合,然后下面有 m 个询问,每个询问有 x 堆石子 ,问你每次只能从某一个堆中取出 y 个石子,并且这个 y 必须属于给定的集合,问你先手胜还是负. 析:一个很简单的 ...
- 浅谈公平组合游戏IGC
浅谈公平组合游戏IGC IGC简介 一个游戏满足以下条件时被叫做IGC游戏 (前面三个字是自己YY的,不必在意) 竞争性:两名玩家交替行动. 公平性:游戏进程的任意时刻,可以执行的操作和操作者本人无关 ...
- Codeforces 918D MADMAX 图上dp 组合游戏
题目链接 题意 给定一个 \(DAG\),每个边的权值为一个字母.两人初始各占据一个顶点(可以重合),轮流移动(沿着一条边从一个顶点移动到另一个顶点),要求每次边上的权值 \(\geq\) 上一次的权 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 博弈论题目总结(二)——SG组合游戏及变形
SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...
- 【博弈论】组合游戏及SG函数浅析
目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...
- uva 1378 - A Funny Stone Game(组合游戏)
题目链接:uva 1378 - A Funny Stone Game 题目大意:两个人玩游戏,对于一个序列,轮流操作.每次选中序列中的i,j,k三个位置要求i<j≤k,然后arr[i]减1,对应 ...
- POJ1740A New Stone Game[组合游戏]
A New Stone Game Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5769 Accepted: 3158 ...
随机推荐
- iOS -- 十进制、十六进制字符串,byte,data等之间的转换
十进制->十六进制 Byte bytes[]={0xA6,0x27,0x0A}; NSString *strIdL = [NSStringstringWithFormat:]]]; 十六进制-& ...
- 学习笔记 Java类的封装、继承和多态 2014.7.10
1.问题:toString()没搞懂? int a = 1; Integer aa = new Integer(a); //这是实现的过程 System.out.println("Hello ...
- Neural Networks for Machine Learning by Geoffrey Hinton (1~2)
机器学习能良好解决的问题 识别模式 识别异常 预測 大脑工作模式 人类有个神经元,每一个包括个权重,带宽要远好于工作站. 神经元的不同类型 Linear (线性)神经元 Binary thresho ...
- makefile 与android.mk中加信息打印
makefile里面加打印: [table]@echo ' zImage - Compressed kernel image' android.mk里面加信息打印: $(warning TEXT... ...
- poj 1651 Multiplication Puzzle【区间DP】
题目链接:http://poj.org/problem? id=1651 题意:初使ans=0,每次消去一个值,位置在pos(pos!=1 && pos !=n) 同一时候ans+=a ...
- android实例讲解----Tomcat部署Web应用方法总结
参考文档:http://blog.csdn.net/yangxueyong/article/details/6130065 Tomcat部署Web应用方法总结 一.架构介 ...
- 构造方法后面带:this()
可以这么理解,有参数的构造函数需要执行无参构造函数中的代码,为了省去重复代码的编写,所以就继承了,先执行没参数的那个构造函数. 在this上“转到定义”(F12)就到第一个构造函数上去了.
- Java EJB JBoss
JBoss:JBoss是web服务器的一种,主要做EJB容器,和tomcat集成就可以jsp,servlet,ejb通吃了JBoss有两种版本,一种是独立的,一种是和tomcat集成的,当然都是免费的 ...
- Laravel建站02--配置Laravel
Laravel项目的根目录下有.env文件,如果没有可以把.env.example改名为.env 这个文件是配置文件,可以把app_key.数据库.redis缓存等配置信息写在这个文件里. 目前5.4 ...
- android中的常见对话框
在android中对话框是一种常见的操作,常见的对话框有下面几种: 以下是xml布局文件: <LinearLayout xmlns:android="http://schemas.an ...