题目背景

Gauss消元

题目描述

给定一个线性方程组,对其求解

输入输出格式

输入格式:

第一行,一个正整数 nn

第二至 n+1n+1行,每行 n+1n+1 个整数,为a_1, a_2 \cdots a_na1​,a2​⋯an​ 和 bb,代表一组方程。

输出格式:

共n行,每行一个数,第 ii行为 x_ixi​ (保留2位小数)

如果不存在唯一解,在第一行输出"No Solution".

输入输出样例

输入样例#1: 复制

3
1 3 4 5
1 4 7 3
9 3 2 2
输出样例#1: 复制

-0.97
5.18
-2.39

说明

1 \leq n \leq 100, \left | a_i \right| \leq {10}^4 , \left |b \right| \leq {10}^41≤n≤100,∣ai​∣≤104,∣b∣≤104

题解

这个东西从寒假拖到现在qwq

大概是自己变强了吧,觉得写起来蛮轻松的qwq

 /*
qwerta
P3389 【模板】高斯消元法 Accepted
100
代码 C++,0.95KB
提交时间 2018-11-02 07:49:21
耗时/内存 36ms, 800KB
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
double a[][];
bool sf[];
int pos[];
double ans[];
int main()
{
//freopen("a.in","r",stdin);
ios::sync_with_stdio(false);
int n;
cin>>n;
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j)
cin>>a[i][j];
for(int s=;s<=n;++s)
{
int mac=,macc=-1e4-;//mac记录系数绝对值最大的行号,macc记录绝对值
for(int i=;i<=n;++i)
if(!sf[i])//如果这一行没有被选过
{
if(abs(a[i][s])>macc)
{
mac=i,
macc=a[i][s];
}
}
if(abs(a[mac][s])<1e-){cout<<"No Solution";return ;}//绝对值最大的系数为0,则无解
double c=a[mac][s];//c为最大行第一个非零项的系数
pos[s]=mac;//第s个未知数的结果在第mac行
sf[mac]=;//打个被选过的标记
for(int j=s;j<=n+;++j)//先把最大行化简
{
a[mac][j]/=c;
}
for(int i=;i<=n;++i)
if(i!=mac)
{
double c=a[i][s]/a[mac][s];
for(int j=s;j<=n+;++j)
a[i][j]-=a[mac][j]*c;//把第i行的首项化到跟mac行一样,再减掉mac行的当前项
}
/*
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n+1;++j)
cout<<a[i][j]<<" ";
cout<<endl;
}
cout<<endl;
*/
}
for(int i=;i<=n;++i)
ans[i]=a[pos[i]][n+];//取解
for(int i=;i<=n;++i)
printf("%.2f\n",ans[i]);
return ;
}

(反正也不考裸题 难的又看不出来 不知道我写个什么玩意儿

「LuoguP3389」【模板】高斯消元法的更多相关文章

  1. Note -「计算几何」模板

      尚未完整测试,务必留意模板 bug! /* Clearink */ #include <cmath> #include <queue> #include <cstdi ...

  2. 「BJWC2010」模板严格次小生成树

    题目描述 小 \(C\) 最近学了很多最小生成树的算法,\(Prim\) 算法.\(Kruskal\) 算法.消圈算法等等.正当小\(C\)洋洋得意之时,小\(P\)又来泼小\(C\)冷水了.小\(P ...

  3. Solution -「LOCAL」模板

    \(\mathcal{Description}\)   OurOJ.   给定一棵 \(n\) 个结点树,\(1\) 为根,每个 \(u\) 结点有容量 \(k_u\).\(m\) 次操作,每次操作 ...

  4. 「luogu3380」【模板】二逼平衡树(树套树)

    「luogu3380」[模板]二逼平衡树(树套树) 传送门 我写的树套树--线段树套平衡树. 线段树上的每一个节点都是一棵 \(\text{FHQ Treap}\) ,然后我们就可以根据平衡树的基本操 ...

  5. 「luogu3402」【模板】可持久化并查集

    「luogu3402」[模板]可持久化并查集 传送门 我们可以用一个可持久化数组来存每个节点的父亲. 单点信息更新和查询就用主席树多花 一个 \(\log\) 的代价来搞. 然后考虑如何合并两个点. ...

  6. SpringBoot图文教程10—模板导出|百万数据Excel导出|图片导出「easypoi」

    有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1「概念+ ...

  7. Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门

      进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...

  8. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  9. spring cloud 入门,看一个微服务框架的「五脏六腑」

    Spring Cloud 是一个基于 Spring Boot 实现的微服务框架,它包含了实现微服务架构所需的各种组件. 注:Spring Boot 简单理解就是简化 Spring 项目的搭建.配置.组 ...

随机推荐

  1. 【Sprint3冲刺之前】软件开发计划书

    TD校园助手软件开发计划书 1.引言 1.1 编写目的 为了保证项目团队按时保质地完成项目目标,便于项目团队成员更好地了解项目情况,使项目工作开展的各个过程合理有序,同时便于老师和其他同学了解我们的项 ...

  2. Spring学习十三----------Spring AOP的基本概念

    © 版权声明:本文为博主原创文章,转载请注明出处 什么是AOP -面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术 -主要的功能是:日志记录.性能统计.安全控制.事务处理. ...

  3. Django之中间件-CSRF

    CSRF a.CSRF原理 post提交时需要提交csrf_token ,缺少则不通过 在form表单中加入: {% csrf_token %} b.无CSRF时存在隐患 防护其他人通过别的链接pos ...

  4. Windows 10 1703创意者更新官方ISO镜像大全

    2017年04月07日 20:00 19867 次阅读 稿源:快科技 12 条评论 Windows 10 Creators Update创意者更新正式版已经发布,目前只能通过易生.MCT工具或者ISO ...

  5. linux SPI驱动——spi core(四)

    一: SPI核心,就是指/drivers/spi/目录下spi.c文件中提供给其他文件的函数,首先看下spi核心的初始化函数spi_init(void). 1: static int __init s ...

  6. 多媒体开发之---live555 分析客户端

    live555的客服端流程:建立任务计划对象--建立环境对象--处理用户输入的参数(RTSP地址)--创建RTSPClient实例--发出DESCRIBE--发出SETUP--发出PLAY--进入Lo ...

  7. LeetCode -- Flatten 二叉树

    这个题目主要考察二叉树的先序遍历. 1. 先序遍历2. 节点用队列存储3. 遍历队列,建立链表 实现: public class Solution { public void Flatten(Tree ...

  8. 数据结构:最小生成树--Kruskal算法

    Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...

  9. 【BZOJ4568】[Scoi2016]幸运数字 倍增+线性基

    [BZOJ4568][Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念 ...

  10. windows下安装mysql 开机启动

    1 下载地址 http://dev.mysql.com/downloads/installer/ 2 下载版本 mysql community server 5.7.x 这个版本是一个傻瓜版本,设置r ...