【Luogu】P3389高斯消元模板(矩阵高斯消元)
高斯消元其实是个大模拟qwq
所以就着代码食用
首先我们读入
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j) scanf("%lf",&s[i][j]);
读入肯定没什么问题(不过我在这卡了一分多钟)
然后我们要进行消元操作
所谓消元操作其实就是对于输入的矩阵
比如说
9 3 2 2
1 4 7 3
1 3 4 5
进行一番乱搞,使得第当前枚举的(比如说枚举第i行第i列)s[i][j]系数变成1。
实际上就是整行同除qwq
比如我们除完第一行第一列的之后,矩阵就变成这样
1 0.33 0.22 0.22
1 4 7 3
1 3 4 5
这样,然后把其他行的这个元消掉
1 0.33 0.22 0.22
0 3.67 6.78 2.78
0 2.67 3.78 3.78
这样子。
然后接着去消下一行的元。
最后我们可以得到一个阵列
1.00 0.33 0.22 0.22
0.00 1.00 1.85 0.76
0.00 0.00 1.00 -2.39
观察到最后一行表示的方程式,xn=-2.39
然后可以解出上一行的xn-1
然后一直往回带就好了
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#define Exit {printf("No Solution"); return 0; }
using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} double s[][];
double ans[]; int main(){
int n=read();
for(int i=;i<=n;++i)
for(int j=;j<=n+;++j) scanf("%lf",&s[i][j]);
for(int i=;i<=n;++i){
int now=i;
if(!s[i][i]) Exit;
for(int j=now;j<=n;++j)
if(fabs(s[j][i])>fabs(s[now][i])) now=j;
if(now!=i) swap(s[i],s[now]);
double div=s[i][i];
for(int j=i;j<=n+;++j) s[i][j]/=div;
for(int j=i+;j<=n;++j){
double ret=s[j][i];
for(int k=i;k<=n+;++k){
s[j][k]-=ret*s[i][k];
}
}
}
ans[n]=s[n][n+];
for(int i=n-;i;--i){
double now=;
for(int j=i+;j<=n;++j) now+=ans[j]*s[i][j];
ans[i]=s[i][n+]-now;
}
for(int i=;i<=n;++i) printf("%.2lf\n",ans[i]);
return ;
}
【Luogu】P3389高斯消元模板(矩阵高斯消元)的更多相关文章
- Luogu P3389 高斯消元
https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...
- 高斯消元模板!!!bzoj1013
/* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
- 【转】高斯消元模板 by kuangbin
写的很好,注释很详细,很全面. 原blog地址:http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html #include< ...
- 洛谷-P3389-高斯消元模板
链接: https://www.luogu.org/problem/P3389 题意: 给定一个线性方程组,对其求解 思路: 高斯消元,从第一项消到最后一项,消成一个上三角矩阵.再从最后一项依次向上回 ...
- 【线性代数】2-3:消元与矩阵的关系(Elimination and Matrix)
title: [线性代数]2-3:消元与矩阵的关系(Elimination and Matrix) toc: true categories: Mathematic Linear Algebra da ...
- Gauss消元模板
; //高斯消元模板 //----------------------------------------------------------------------------------- //把 ...
- OpenJudge计算概论-矩阵归零消减序列和
矩阵归零消减序列和 总时间限制: 1000ms 内存限制: 65536kB 描述 给定一个n*n的矩阵( <= n <= ,元素的值都是非负整数).通过n-1次实施下述过程,可把这个矩阵转 ...
- Java开发中经典的小实例-( 鸡蛋0.1元一个,鸭蛋3元一个,鹅蛋6元一个。求一百元买一百个蛋。)
public class Test24 { public static void main(String[] args) { // 鸡蛋0.1元一个,鸭蛋3元一个,鹅蛋6元一个.求 ...
随机推荐
- Cesium左右立体视觉续篇——遗留问题(渲染错误)以及临时替代方案
遗留问题详细说明 已解决部分 立体视觉中的视差: 横向渲染压缩. 遗留问题 1.左右分屏中的部分地图切片未渲染 问题描述:如下图(图片为解决问题后的图片),红色区域会显示黑色,无法正常显示影像.2.相 ...
- typescript设置全屏
fullScreen() { document.getElementById("fullScreen").style.display = "none"; doc ...
- jvm | 基于栈的解释器执行过程
一段简单的算术代码: public class Demo { public static void main(String[] args) { int a = 1; int b = 2; int c ...
- Google「Game Builder」:不懂编程,也能开发 3D 游戏
简评: 之前微软曾推出过「Kodu Game Lab」,它可以让完全没有编程经验的人通过简单的步骤打造属于自己的游戏.无独有偶,Google 最近在 Steam 也推出了类似的程序「Game Buil ...
- 11.使用while和for循环分别打印字符串s=’asdfer’中每个元素
1).for循环 s = 'asdfer' for i in s: print(i) 2).while循环 s = 'asdfer' while 1: print(s[index]) index += ...
- 《毛毛虫组》【Alpha】Scrum meeting 4
第二天 日期:2019/6/17 1.1 今日完成任务情况以及遇到的问题. 今日完成任务情况: 货物入库管理模块设计: (1)对数据库表--tb_OutStore进行修改并完善: (2)学习trig_ ...
- mysql5.7.24 解压版安装步骤以及遇到的问题
1.下载 https://dev.mysql.com/downloads/mysql/ 2.解压到固定位置,如D:\MySQL\mysql-5.7.24 3.添加my.ini文件 跟bin同级 [my ...
- 手机web网页的设计
Viewport(视口) 1.视口概念 描述:视口,就是视图窗口的简称,页面中视口大小实际上就是html元素的显示大小 说明:页面想要在移动端加载必须进行视口适配 如果不对页面进行调整,默认页面在 ...
- 腾讯云Ubuntu服务器修改root密码
1.修改root密码 执行以下命令,按照提示修改密码 sudo passwd root 2.修改ssh配置 执行以下命令 sudo vi /etc/ssh/sshd_config 找到 PermitR ...
- 基于axios的vue插件,让http请求更简单
ajax-plus 基于axios 的 Vue 插件 如何使用 npm 模块引入 首先通过 npm 安装 ```npm install --save ajax-plus or yarn add aja ...