bzoj 2798 [Poi2012]Bidding 博弈论+dp
题目大意
A和B两个人在玩一个游戏,这个游戏是他们轮流操作一对整数(x,y)。
初始时(x,y)=(1,0),可以进行三种操作:
- 将(x,y)变成(1,x+y)。
- 将(x,y)变成(2x,y)。
- 将(x,y)变成(3x,y)。
给定正整数n (n<=30,000),如果x+y>=n时就不能进行后两种操作。
如果某个人操作后y>=n,他就输掉了
分析
当一个人操作前x+y>=n时,他就输掉了
博弈论问题的一般方法
可以是操作后变成一个子问题
此题中每次操作相当于减少离n的距离
我们考虑dp
dp[i][j][k]表示y离n还有i,\(x=2^j*3^k\),是否必胜
做法
交互题
获得对面操作后,就直接执行对面操作
轮到自己,就选择一个让对手必败的操作
solution
for(i=1;i<=n;i++)
for(j=20;j>=0;j--)
for(k=20;k>=0;k--){
if(p2[j]*p3[k]>=i) f[i][j][k]=0;
else{
if(!f[i][j+1][k]||!f[i][j][k+1]||!f[i-p2[j]*p3[k]][0][0]) f[i][j][k]=1;
else f[i][j][k]=0;
}
}
bzoj 2798 [Poi2012]Bidding 博弈论+dp的更多相关文章
- bzoj 2792 [Poi2012]Well 二分+dp+two_pointer
题目大意 给出n个正整数X1,X2,...Xn,可以进行不超过m次操作,每次操作选择一个非零的Xi,并将它减一. 最终要求存在某个k满足Xk=0,并且z=max{|Xi - Xi+1|}最小. 输出最 ...
- 2018.09.25 poj2068 Nim(博弈论+dp)
传送门 题意简述:m个石子,有两个队每队n个人循环取,每个人每次取石子有数量限制,取最后一块的输,问先手能否获胜. 博弈论+dp. 我们令f[i][j]f[i][j]f[i][j]表示当前第i个人取石 ...
- 【uoj#51】[UR #4]元旦三侠的游戏 博弈论+dp
题目描述 给出 $n$ 和 $m$ ,$m$ 次询问.每次询问给出 $a$ 和 $b$ ,两人轮流选择:将 $a$ 加一或者将 $b$ 加一,但必须保证 $a^b\le n$ ,无法操作者输,问先手是 ...
- 【bzoj4550】小奇的博弈 博弈论+dp
题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同. 小奇可以移动白色棋子,提比可以移动黑色的棋子, ...
- 「模拟赛20181025」御风剑术 博弈论+DP简单优化
题目描述 Yasuo 和Riven对一排\(n\)个假人开始练习.斩杀第\(i\)个假人会得到\(c_i\)个精粹.双方轮流出招,他们在练习中互相学习,所以他们的剑术越来越强.基于对方上一次斩杀的假人 ...
- Bzoj 1131[POI2008]STA-Station (树形DP)
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...
- BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP
BZOJ_2017_[Usaco2009 Nov]硬币游戏_博弈论+DP Description 农夫约翰的奶牛喜欢玩硬币游戏,因此他发明了一种称为“Xoinc”的两人硬币游戏. 初始时,一个有N(5 ...
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- bzoj 4550: 小奇的博弈【博弈论+dp】
首先看出终止状态是全都堆在左边或者右边,然后发现黑的向左白的向右是最优策略(如果不能这样了也就该输了) 然后就不会了 参考 http://www.cnblogs.com/CQzhangyu/p/770 ...
随机推荐
- kubernetes-jenkins CI/CD平台
软件环境:Jenkins + Kubernetes + Git + Maven + Harbor 发布流程设计 工作流程:手动/自动构建-> Jenkins 调度K8S API->动态生成 ...
- kubernetes-核心概念及创建应用(六)
kubernetes是什么: •Kubernetes是Google在2014年开源的一个容器集群管理系统,Kubernetes简称K8S.•K8S用于容器化应用程序的部署,扩展和管理.•K8S提供了容 ...
- 读书笔记-《深入理解Java虚拟机:JVM高级特性与最佳实践》
目录 概述 第一章: 走进Java 第二章: Java内存区域与内存溢出异常 第三章: 垃圾收集器与内存分配策略 第四章: 虚拟机性能监控与故障处理 第五章: 调优案例分析与实战 第六章: 类文件结构 ...
- 性能优化之MySQL优化(慕课)
MySQL数据库优化 1-1MySQL优化简介 数据库优化的目的 避免出现页面访问错误 由于数据库连接timeout产生5XX错误 由于慢查询造成页面无法加载 由于阻塞造成数据无法提交 增加数据库的稳 ...
- python class 巩固
class 类定义 语法格式如下: class ClassName: <statement-1> ... <statement-N> 类属性与方法 属性 操作属性 getatt ...
- 【转】再谈 最速下降法/梯度法/Steepest Descent
转载请注明出处:http://www.codelast.com/ 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了 ...
- NOIP模拟赛 高级打字机
[题目描述] 早苗入手了最新的高级打字机.最新款自然有着与以往不同的功能,那就是它具备撤销功能,厉害吧. 请为这种高级打字机设计一个程序,支持如下3种操作: 1.T x:在文章末尾打下一个小写字母x. ...
- 【状态压缩dp】1195: [HNOI2006]最短母串
一个清晰的思路就是状压dp:不过也有AC自动机+BFS的做法 Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T ...
- HTTP-常用配置
前言 这篇主要介绍HTTP服务程序环境 可能有一些介绍不到,博主能力有限,欢迎大神来纠正改进 HTTP协议从http/0.9到如今的http/2.0中间发生了很大的改变,现在主流的事http/1.1 ...
- 【android】签署应用采用相同证书的用处
在应用的预期生命周期内,您应使用相同证书签署所有 APK 应用升级:当系统安装应用的更新时,它会比较新版本和现有版本中的证书.如果证书匹配,则系统允许更新.如果您使用不同的证书签署新版本,则必须为应用 ...