poj 2932 Coneology(扫描线+set)
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 3574 | Accepted: 680 |
Description
A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.
Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.
Input
The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Ri, i = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.
The first line of the input contains the integer N. The next N lines each contain three real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center of the base of cone i.
Output
The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.
Sample Input
- 5
- 1 0 -2
- 3 0 3
- 10 0 0
- 1 0 1.5
- 10 50 50
Sample Output
- 2
- 3 5
Source
【思路】
扫描线
将一个园最左点与最右点看作事件,按从左向右的顺序扫描。
如果扫描到最左点则判断在其上方和下方且最近的圆的包含关系,当不被上下两圆包含时累计答案。
如果最右点则删除该圆。
用set组织数据以实现查找与删除的功能。
【代码】
- #include<set>
- #include<map>
- #include<cmath>
- #include<cstdlib>
- #include<cstdio>
- #include<cstring>
- #include<algorithm>
- #define mp(a,b) make_pair(a,b)
- #define FOR(a,b,c) for(int a=(b);a<=(c);a++)
- #define pr pair<double,int>
- using namespace std;
- const int N = +;
- double x[N],y[N],r[N];
- pr l[N*]; int tot;
- set<pr> S;
- set<pr> ::iterator it;
- int n,ans,vis[N];
- bool inside(int a,int b) {
- return (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])<=r[b]*r[b];
- }
- int main() {
- scanf("%d",&n);
- FOR(i,,n) scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
- FOR(i,,n) {
- l[++tot]=mp(x[i]-r[i],i);
- l[++tot]=mp(x[i]+r[i],i+n);
- }
- sort(l+,l+tot+);
- FOR(i,,tot) {
- int now=l[i].second;
- if(now<=n) {
- it=S.lower_bound(mp(y[now],now));
- if(it!=S.end() && inside(now,it->second)) continue;
- if(it!=S.begin() && inside(now,(--it)->second)) continue;
- vis[now]=; ans++;
- S.insert(mp(y[now],now));
- }
- else
- S.erase(mp(y[now-n],now-n));
- }
- printf("%d\n",ans);
- FOR(i,,n) if(vis[i]) printf("%d ",i);
- return ;
- }
poj 2932 Coneology(扫描线+set)的更多相关文章
- POJ 2932 圆扫描线
求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...
- POJ 2932 Coneology(扫描线)
[题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...
- poj 2932 Coneology (扫描线)
题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...
- POJ 2932 Coneology计算最外层圆个数
平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...
- TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL
题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...
- Coneology(POJ 2932)
原题如下: Coneology Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4937 Accepted: 1086 D ...
- POJ 1151 Atlantis (扫描线+线段树)
题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...
- N - Picture - poj 1177(扫描线求周长)
题意:求周长的,把矩形先进行融合后的周长,包括内周长 分析:刚看的时候感觉会跟棘手,让人无从下手,不过学过扫描线之后相信就很简单了吧(扫描线的模板- -),还是不说了,下面是一精确图,可以拿来调试数据 ...
- poj2932 Coneology (扫描线)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Coneology Time Limit: 5000MS Memory Lim ...
随机推荐
- Java中printStackTrace()、toString()、getMessage()的区别
一.三者之间的关系图: 二.演示 1.printStackTrace()演示: public class Test { public int div(int a, int b) { ...
- nginx 限制及指定IP或IP段访问
nginx 限制及指定IP或IP段访问. location / { deny 192.168.1.1; allow ; allow ; deny all; } 企业问题案例:Nginx做反向代理的时候 ...
- Linux Shell脚本之自动修改IP
作为一名Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名.ip信息.网关等配置.修改成特定的主机名 ...
- PHP文件下载方式
<?php// 不能是中文目录,其实如果是 .rar, .zip 类的这些文件,直接连接就可以下载了!function download($file_dir,$file_name)//参数说明: ...
- 关于angular 自定义directive
关于angular 自定义directive的小结 首先我们创建一个名为"expander"的自定义directive指令: angular.module("myApp& ...
- 数组-去重、排序方法、json排序
1.数组去重 /*方法一: 1,'1' 会被认为是相同的; 所有hash对象,如:{x;1},{y:1}会被认为是相同的 //10ms */ Array.prototype.unique=functi ...
- sql日期函数
1.sql常用日期函数 当我们在进行数据处理的时候,常常需要用到日期函数的计算,最难的任务恐怕是确保所插入的日期的格式,与数据库中日期列的格式相匹配.只要数据包含的只是日期部分,运行查询就不会出问题. ...
- shell for循环+case的脚本(监控程序状态)
分享一个shell for循环+case的脚本(监控程序状态) 分享一个for循环+case的脚本(监控程序状态并执行相关操作) ,供大家学习参考. 复制代码代码如下: #/bin/bash set ...
- 玩转HTML5移动页面(优化篇)
原文:http://www.grycheng.com/?p=472 承接上文<玩转HTML5移动页面(动效篇)>,上次说的是让页面动起来的一些小技巧.而页面动起来的根基是功能可用的页面,因 ...
- STM32之串口通信
一.RS232通信协议 1.概念 个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries Association,EIA) 所制定的异步传输标准接口. 2.电气特性 逻 ...