Coneology
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3574   Accepted: 680

Description

A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.

Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.

Input

The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Ri, i = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.

The first line of the input contains the integer N. The next N lines each contain three real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center of the base of cone i.

Output

The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.

Sample Input

5
1 0 -2
3 0 3
10 0 0
1 0 1.5
10 50 50

Sample Output

2
3 5

Source

【思路】

扫描线

将一个园最左点与最右点看作事件,按从左向右的顺序扫描。

如果扫描到最左点则判断在其上方和下方且最近的圆的包含关系,当不被上下两圆包含时累计答案。

如果最右点则删除该圆。

用set组织数据以实现查找与删除的功能。

【代码】

 #include<set>
#include<map>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mp(a,b) make_pair(a,b)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
#define pr pair<double,int>
using namespace std; const int N = +; double x[N],y[N],r[N];
pr l[N*]; int tot;
set<pr> S;
set<pr> ::iterator it;
int n,ans,vis[N]; bool inside(int a,int b) {
return (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])<=r[b]*r[b];
} int main() {
scanf("%d",&n);
FOR(i,,n) scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
FOR(i,,n) {
l[++tot]=mp(x[i]-r[i],i);
l[++tot]=mp(x[i]+r[i],i+n);
}
sort(l+,l+tot+);
FOR(i,,tot) {
int now=l[i].second;
if(now<=n) {
it=S.lower_bound(mp(y[now],now));
if(it!=S.end() && inside(now,it->second)) continue;
if(it!=S.begin() && inside(now,(--it)->second)) continue;
vis[now]=; ans++;
S.insert(mp(y[now],now));
}
else
S.erase(mp(y[now-n],now-n));
}
printf("%d\n",ans);
FOR(i,,n) if(vis[i]) printf("%d ",i);
return ;
}

poj 2932 Coneology(扫描线+set)的更多相关文章

  1. POJ 2932 圆扫描线

    求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...

  2. POJ 2932 Coneology(扫描线)

    [题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...

  3. poj 2932 Coneology (扫描线)

    题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...

  4. POJ 2932 Coneology计算最外层圆个数

    平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...

  5. TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL

    题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...

  6. Coneology(POJ 2932)

    原题如下: Coneology Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4937   Accepted: 1086 D ...

  7. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  8. N - Picture - poj 1177(扫描线求周长)

    题意:求周长的,把矩形先进行融合后的周长,包括内周长 分析:刚看的时候感觉会跟棘手,让人无从下手,不过学过扫描线之后相信就很简单了吧(扫描线的模板- -),还是不说了,下面是一精确图,可以拿来调试数据 ...

  9. poj2932 Coneology (扫描线)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Coneology Time Limit: 5000MS   Memory Lim ...

随机推荐

  1. Codevs 3990 中国余数定理 2

    3990 中国余数定理 2 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 白银 Silver 传送门 题目描述 Description Skytree神犇最近在研究中国博大精深的数学. ...

  2. error signing assembly unknown error

    用VS2010 编译 C#工程,出现 Cryptographic failure while signing assembly 'Assembly.dll' -- 'Unknown error (80 ...

  3. MongoDB源码编译

    MongoDB源码编译 本人编译的版本编译的版本为mongodb2.6分支,目前MongoDB3.0已经发布,编译步骤和2.6的差不多,不过3.0版本要求编译器支持c++11标准,所以如果是在Linu ...

  4. ASP.NET全局文件与防盗链

    添加Web→全局应用程序类,注 文件名不要改 Global.asax 全局文件是对Web应用声明周期的一个事件响应的地方,将Web应用启动时初始化的一些代码写到 Application_Start中, ...

  5. ubuntu 下安装软件,卸载,查看已经安装的软件

    参考网址:http://wiki.ubuntu.org.cn/UbuntuSkills 一般的安装程序用三种: .deb 和.rpm 这两种安装文件 .bundle 这是二进制的安装文件 而 tar. ...

  6. 理解依赖注入(IOC)和学习Unity

    资料1: IOC:英文全称:Inversion of Control,中文名称:控制反转,它还有个名字叫依赖注入(Dependency Injection). 作用:将各层的对象以松耦合的方式组织在一 ...

  7. JFreeChart入学教程

    JFreeChart入学教程 2011-08-08 14:55:19|  分类: 技术篇 |举报 |字号 订阅   JFreeChart 是一组功能强大.灵活易用的Java绘图API,使用它可以生成多 ...

  8. 快速生成json实体类

    读取一个json文件,并与实体相对应: static void Main(string[] args) { string json = ""; FileStream fs = ne ...

  9. 向OC类中添加默认的协议实现(ProtocolKit)

    以forkingdog的PorotocolKit举例 举例 ProtocolKit Protocol extension for Objective-C Usage Your protocol: @p ...

  10. 股票API

    实时股票数据接口大全 股票数据的获取目前有如下两种方法可以获取:1. http/javascript接口取数据2. web-service接口 1.http/javascript接口取数据 1.1Si ...