Coneology
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3574   Accepted: 680

Description

A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.

Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.

Input

The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Ri, i = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.

The first line of the input contains the integer N. The next N lines each contain three real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center of the base of cone i.

Output

The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.

Sample Input

5
1 0 -2
3 0 3
10 0 0
1 0 1.5
10 50 50

Sample Output

2
3 5

Source

【思路】

扫描线

将一个园最左点与最右点看作事件,按从左向右的顺序扫描。

如果扫描到最左点则判断在其上方和下方且最近的圆的包含关系,当不被上下两圆包含时累计答案。

如果最右点则删除该圆。

用set组织数据以实现查找与删除的功能。

【代码】

 #include<set>
#include<map>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mp(a,b) make_pair(a,b)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
#define pr pair<double,int>
using namespace std; const int N = +; double x[N],y[N],r[N];
pr l[N*]; int tot;
set<pr> S;
set<pr> ::iterator it;
int n,ans,vis[N]; bool inside(int a,int b) {
return (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])<=r[b]*r[b];
} int main() {
scanf("%d",&n);
FOR(i,,n) scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
FOR(i,,n) {
l[++tot]=mp(x[i]-r[i],i);
l[++tot]=mp(x[i]+r[i],i+n);
}
sort(l+,l+tot+);
FOR(i,,tot) {
int now=l[i].second;
if(now<=n) {
it=S.lower_bound(mp(y[now],now));
if(it!=S.end() && inside(now,it->second)) continue;
if(it!=S.begin() && inside(now,(--it)->second)) continue;
vis[now]=; ans++;
S.insert(mp(y[now],now));
}
else
S.erase(mp(y[now-n],now-n));
}
printf("%d\n",ans);
FOR(i,,n) if(vis[i]) printf("%d ",i);
return ;
}

poj 2932 Coneology(扫描线+set)的更多相关文章

  1. POJ 2932 圆扫描线

    求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...

  2. POJ 2932 Coneology(扫描线)

    [题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...

  3. poj 2932 Coneology (扫描线)

    题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...

  4. POJ 2932 Coneology计算最外层圆个数

    平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...

  5. TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL

    题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...

  6. Coneology(POJ 2932)

    原题如下: Coneology Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4937   Accepted: 1086 D ...

  7. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  8. N - Picture - poj 1177(扫描线求周长)

    题意:求周长的,把矩形先进行融合后的周长,包括内周长 分析:刚看的时候感觉会跟棘手,让人无从下手,不过学过扫描线之后相信就很简单了吧(扫描线的模板- -),还是不说了,下面是一精确图,可以拿来调试数据 ...

  9. poj2932 Coneology (扫描线)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Coneology Time Limit: 5000MS   Memory Lim ...

随机推荐

  1. python 自动化之路 day 08 面向对象进阶

    面向对象高级语法部分 经典类vs新式类 静态方法.类方法.属性方法 类的特殊方法 反射 异常处理 面向对象高级语法部分 经典类vs新式类 把下面代码用python2 和python3都执行一下 1 2 ...

  2. mini2440移植uboot-2008.10 (二) DM9000网卡驱动移植

    还是利用 mini2440移植uboot-2008.10 (一)  修改好的代码 通过观察可以发现,mini2400使用的网卡芯片是DM9000,在uboot-2008.10源码中已经支持该芯片的驱动 ...

  3. 开发错误日志之Unix/Linux命令未执行或无结果等且程序无错误

    在Unix/Linux环境中开发时,特别要注意权限问题,否则经常找不到错误的原因,其实就是因为权限所致.

  4. ubuntu mint 15 编译安装PHP开发环境

    php 5.3.5(download zip) httpd 2.2.24(download zip) mysql: apt-get install mysql step 1: install mysq ...

  5. jQuery实现购物车多物品数量的加减+总价+删除计算

    <?php session_start(); ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//E ...

  6. 规则引擎-BRMS在企业开发中的应用

    1. 什么是规则复杂企业级项目的开发以及其中随外部条件不断变化的业务规则(business logic),迫切需要分离商业决策者的商业决策逻辑和应用开发者的技术决策,并把这些商业决策放在中心数据库或其 ...

  7. Java中的TCP/UDP网络通信编程

    127.0.0.1是回路地址,用于测试,相当于localhost本机地址,没有网卡,不设DNS都可以访问. 端口地址在0~65535之间,其中0~1023之间的端口是用于一些知名的网络服务和应用,用户 ...

  8. Building Python 2.7.10 with Visual Studio 2010 or 2015 - Google Chrome

    您的浏览器(Chrome 33) 需要更新.该浏览器有诸多安全漏洞,无法显示本网站的所有功能. 了解如何更新浏览器 × p-nand-q.com C++  Python  Programming  L ...

  9. 强大DevExpress,Winform LookUpEdit 实现多列查询 gridview弹出下拉选择 z

    关键代码请参考http://www.devexpress.com/Support/Center/p/K18333.aspx 最新DEMO 下载 The current GridLookUpEdit's ...

  10. 文档学习 - UILabel - 属性详解

    #import "ViewController.h" @implementation ViewController - (void)viewDidLoad { [super vie ...