Coneology
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 3574   Accepted: 680

Description

A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.

Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.

Input

The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Ri, i = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.

The first line of the input contains the integer N. The next N lines each contain three real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center of the base of cone i.

Output

The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.

Sample Input

5
1 0 -2
3 0 3
10 0 0
1 0 1.5
10 50 50

Sample Output

2
3 5

Source

【思路】

扫描线

将一个园最左点与最右点看作事件,按从左向右的顺序扫描。

如果扫描到最左点则判断在其上方和下方且最近的圆的包含关系,当不被上下两圆包含时累计答案。

如果最右点则删除该圆。

用set组织数据以实现查找与删除的功能。

【代码】

 #include<set>
#include<map>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mp(a,b) make_pair(a,b)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
#define pr pair<double,int>
using namespace std; const int N = +; double x[N],y[N],r[N];
pr l[N*]; int tot;
set<pr> S;
set<pr> ::iterator it;
int n,ans,vis[N]; bool inside(int a,int b) {
return (x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])<=r[b]*r[b];
} int main() {
scanf("%d",&n);
FOR(i,,n) scanf("%lf%lf%lf",&r[i],&x[i],&y[i]);
FOR(i,,n) {
l[++tot]=mp(x[i]-r[i],i);
l[++tot]=mp(x[i]+r[i],i+n);
}
sort(l+,l+tot+);
FOR(i,,tot) {
int now=l[i].second;
if(now<=n) {
it=S.lower_bound(mp(y[now],now));
if(it!=S.end() && inside(now,it->second)) continue;
if(it!=S.begin() && inside(now,(--it)->second)) continue;
vis[now]=; ans++;
S.insert(mp(y[now],now));
}
else
S.erase(mp(y[now-n],now-n));
}
printf("%d\n",ans);
FOR(i,,n) if(vis[i]) printf("%d ",i);
return ;
}

poj 2932 Coneology(扫描线+set)的更多相关文章

  1. POJ 2932 圆扫描线

    求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...

  2. POJ 2932 Coneology(扫描线)

    [题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...

  3. poj 2932 Coneology (扫描线)

    题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...

  4. POJ 2932 Coneology计算最外层圆个数

    平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...

  5. TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL

    题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...

  6. Coneology(POJ 2932)

    原题如下: Coneology Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4937   Accepted: 1086 D ...

  7. POJ 1151 Atlantis (扫描线+线段树)

    题目链接:http://poj.org/problem?id=1151 题意是平面上给你n个矩形,让你求矩形的面积并. 首先学一下什么是扫描线:http://www.cnblogs.com/scau2 ...

  8. N - Picture - poj 1177(扫描线求周长)

    题意:求周长的,把矩形先进行融合后的周长,包括内周长 分析:刚看的时候感觉会跟棘手,让人无从下手,不过学过扫描线之后相信就很简单了吧(扫描线的模板- -),还是不说了,下面是一精确图,可以拿来调试数据 ...

  9. poj2932 Coneology (扫描线)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Coneology Time Limit: 5000MS   Memory Lim ...

随机推荐

  1. EOF是什么?

    转自http://www.ruanyifeng.com/blog/2011/11/eof.html 学习C语言的时候,遇到的一个问题就是EOF. 它是end of file的缩写,表示"文字 ...

  2. hdu 1286 找新朋友 (欧拉函数)

    Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的 ...

  3. js点击 密码输入框密码显示隐藏

    很多密码框都有个眼睛标记,点击能显示密码.原理就是点击切换password为text等显示 下面上代码 <!DOCTYPE html> <html> <head> ...

  4. angularjs制作的iframe后台管理页切换页面

    <code> <!DOCTYPE html><html lang="zh" ng-app><head> <meta chars ...

  5. php Static静态关键字

    静态属性与方法可以在不实例化类的情况下调用,直接使用类名::方法名的方式进行调用.静态属性不允许对象使用->操作符调用. class Car { private static $speed =  ...

  6. 【python】aassert 断言

    语法 : assert 3>4 结果Traceback (most recent call last): File "<pyshell#0>", line 1, ...

  7. STM32库函数实现方法

    一.概述 1.调用STM32库函数配置与直接配置寄存器 ① 直接配置寄存器 使用过51单片机的朋友都知道为了将IO口配置成某种特殊功能或者配置中断控制,我们先将需要如下步骤: 根据需要配置功能计算值- ...

  8. TCP/IP入门学习(2)---OSI分层

    一.会话层以上的处理 1.表示层 将数据从主机特有的格式转换为网络标准传输格式.以此使得不同环境之间的通信成为可能. 2.会话层 即决定使用哪个连接或者哪种连接方式将数据发送出去.会话层也会在数首部添 ...

  9. C++返回引用的函数

    要以引用返回函数值,则函数定义时的格式如下: 类型标识符&类型名 (形参列表及类型说明) { 函数体 } 用const限定引用的声明方式为: const 类型标识符&引用名=目标变量名 ...

  10. FZU 1753

    题目的思路还是很简单的,找出这些组合数中最大的公约数: 其中C(n,k)=n ! /k!/(n-k)! 所以枚举每个素因数,用(n!)的减去(k!)和(n-k)!的就行了... 最后取每组的最小值 # ...