[LeetCode OJ] Word Search 深度优先搜索DFS
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.
For example,
Given board =
[
["ABCE"],
["SFCS"],
["ADEE"]
]
word = "ABCCED", -> returns true,
word = "SEE", -> returns true,
word = "ABCB", -> returns false.
典型的搜索问题,这道题目用了两种方法来做。
一种用到动态规划的思想,用一个vector记录下word中前i个字符构成的子串的所有搜索路径,然后对于前i+1个字符构成的子串
查找搜索路径时,只需判断第i+1个字符在当前由前i个字符构成的子串的搜索路径的最后一个位置的上下左右四个方向是否出现,
如果出现则保存新的路径。最后只需判断查找word时是否有可行的搜索路径存在,如果有,则返回true,否则,返回false。但是,
这种方法的复杂度很高,对于大的测试数据,出现TLE。
class Solution {
public:
bool exist(vector<vector<char> > &board, string word) {
map<int, vector<vector<unsigned> > > path; //path[i]表示word中的前i个字符构成的字符串在board中的查找路径,一共有path[i].size()条合法查找路径
if(word.size()==)
return true;
int width = board[].size();
for(unsigned i=; i<board.size()*width; i++)
{
if(board[i/width][i%width]==word[])
{
vector<unsigned> start;
start.push_back(i);
path[].push_back(start);
}
}
for(unsigned i=; i<word.size(); i++)
{
char c = word[i];
//vector<vector<unsigned> > pt = path[i-1];
for(vector<vector<unsigned> >::iterator it=path[i].begin(); it!=path[i].end(); it++)
{
vector<unsigned> unipath = *it;
int lastpos = unipath.back();
if((lastpos-width)>= && board[(lastpos-width)/width][(lastpos-width)%width]==c && find(unipath.begin(), unipath.end(), (lastpos-width))==unipath.end())
{
unipath.push_back(lastpos-width);
path[i+].push_back(unipath);
unipath.pop_back();
}
if((lastpos+width)<(board.size()*width) && board[(lastpos+width)/width][(lastpos+width)%width]==c && find(unipath.begin(), unipath.end(), (lastpos+width))==unipath.end())
{
unipath.push_back(lastpos+width);
path[i+].push_back(unipath);
unipath.pop_back();
}
if(lastpos%width> && board[(lastpos-)/width][(lastpos-)%width]==c && find(unipath.begin(), unipath.end(), (lastpos-))==unipath.end())
{
unipath.push_back(lastpos-);
path[i+].push_back(unipath);
unipath.pop_back();
}
if((lastpos%width)<(width-) && board[(lastpos+)/width][(lastpos+)%width]==c && find(unipath.begin(), unipath.end(), (lastpos+))==unipath.end())
{
unipath.push_back(lastpos+);
path[i+].push_back(unipath);
unipath.pop_back();
}
if(i==word.size()- && path[word.size()].size()!=)
return true;
}
}
if(path[word.size()].size()==)
return false;
else
return true;
}
};
第二种是用到DFS(深度优先搜索),先找到可行的起始点,然后对于每个起始点判断是否有一条合法搜索路径存在,如果找到
一条合法搜索路径,则不进行后续搜索,直接返回true。如果所有可能的路径验证都不成立后,最后返回false。测试AC。
void search(vector<vector<char> > &board, string word, vector<int> &path, bool &flag)
{
if(word.size()==)
{
flag = true;
return;
} int width = board[].size();
char c = word[];
if(path.size()==)
{
for(unsigned i=; i<board.size()*width; i++)
{
if(board[i/width][i%width]==c)
{
path.push_back(i);
search(board, word.substr(), path, flag);
if(flag==true)
return;
path.pop_back();
}
}
}
else
{
int lastpos = path.back();
if((lastpos-width)>= && board[(lastpos-width)/width][(lastpos-width)%width]==c && find(path.begin(), path.end(), (lastpos-width))==path.end())
{
path.push_back(lastpos-width);
search(board, word.substr(), path, flag);
if(flag==true)
return;
path.pop_back();
}
if((lastpos+width)<(board.size()*width) && board[(lastpos+width)/width][(lastpos+width)%width]==c && find(path.begin(), path.end(), (lastpos+width))==path.end())
{
path.push_back(lastpos+width);
search(board, word.substr(), path, flag);
if(flag==true)
return;
path.pop_back();
}
if(lastpos%width> && board[(lastpos-)/width][(lastpos-)%width]==c && find(path.begin(), path.end(), (lastpos-))==path.end())
{
path.push_back(lastpos-);
search(board, word.substr(), path, flag);
if(flag==true)
return;
path.pop_back();
}
if((lastpos%width)<(width-) && board[(lastpos+)/width][(lastpos+)%width]==c && find(path.begin(), path.end(), (lastpos+))==path.end())
{
path.push_back(lastpos+);
search(board, word.substr(), path, flag);
if(flag==true)
return;
path.pop_back();
} } } class Solution {
public:
bool exist(vector<vector<char> > &board, string word) {
bool flag = false;
vector<int> path; search(board, word, path, flag); return flag;
}
};
[LeetCode OJ] Word Search 深度优先搜索DFS的更多相关文章
- [LeetCode] 79. Word Search 单词搜索
Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...
- [LeetCode] 79. Word Search 词语搜索
Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...
- LeetCode 79. Word Search单词搜索 (C++)
题目: Given a 2D board and a word, find if the word exists in the grid. The word can be constructed fr ...
- [LeetCode] 212. Word Search II 词语搜索 II
Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...
- Java for LeetCode 212 Word Search II
Given a 2D board and a list of words from the dictionary, find all words in the board. Each word mus ...
- 【算法入门】深度优先搜索(DFS)
深度优先搜索(DFS) [算法入门] 1.前言深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解 ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)
深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...
- 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)
需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...
- 深度优先搜索DFS和广度优先搜索BFS简单解析
转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...
随机推荐
- 使用Block来进行页面间的传值
Block语法 定义Block //定义类型 typedef void (^ReceiveMessageBlock)(NSString *); //申明变量 ReceiveMessageBlock t ...
- MD5算法原理
//消息摘要:将任意长度的字符数组处理成定长的字符数组,用于确保原字符串不被修改, //也可以用做密码确认,如果密码一致,则MD5产生后的值必然一致,否则不相同 public class DataUt ...
- .net常見面試題(三)
1, 请你说说.NET中类和结构的区别? 答:结构和类具有大体的语法,但是结构受到的限制比类要多.结构不能申明有默认的构造函数,为结构的副本是又编译器创建和销毁的,所以不需要默认的构造函数和析构函数. ...
- (转载)利用burp suite截断上传拿shell
burpsuite上传必须要有filepath这个参数 第一步:选择一个jpg后缀的马. 第二步:设置本地代理,burp的本地端口是8080 第三步:打开burp suite 按图操作就ok了. 第四 ...
- Arrays.sort源代码解析
Java Arrays.sort源代码解析 Java Arrays中提供了对所有类型的排序.其中主要分为Primitive(8种基本类型)和Object两大类. 基本类型:采用调优的快速排序: 对象类 ...
- OJ题目分类
POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...
- Code Forces 711C Coloring Trees
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- C#Stimulator项目>>>C/C++ DLL的生成和调用,Windows下的多线程
Windows下的多线程 http://blog.csdn.net/ganpengjin1/article/category/2541791 使用C/C++建立DLL,环境VS2013 新建Win32 ...
- [置顶] 文件io(一)--unix环境高级编程读书笔记
unix-like(后面以linux为例)系统中的文件操作只需要五个函数就足够了,open.close.read.write以及lseek.这些操作被称为不带缓存的io,这里有必要说一下带缓存和不带缓 ...
- .NET中ToString()的用法
一.数字转换到字符串 格式说明符 说明 示例 输出 C 货币 2.5.ToString(& ...