UFLDL教程(六)之栈式自编码器
第0步:初始化一些参数和常数
第1步:利用训练样本集训练第一个稀疏编码器
第2步:利用训练样本集训练第二个稀疏编码器
第3步:利用第二个稀疏编码器提取到的特征训练softmax回归模型
第4步:利用误差反向传播进行微调
第5步:利用测试样本集对得到的分类器进行精度测试
下面将程序实现过程中的关键代码post出,欢迎各位网友指点!
stackedAEExercise.m
clc
clear
close all addpath ../common/
addpath ../common/minFunc %%======================================================================
%% STEP : 设置多层自编码器的相关参数
% 整个网络的输入输出结构
inputSize = * ;
numClasses = ;
% 稀疏自编码器结构
hiddenSizeL1 = ; % Layer Hidden Size
hiddenSizeL2 = ; % Layer Hidden Size
% 一些权值
sparsityParam = 0.1; % desired average activation of the hidden units.that is ρ in the lecture
beta = ; % weight of sparsity penalty term
lambda = 3e-; % weight decay parameter %%======================================================================
%% STEP : 载入MNSIT数据集及标签集
addpath mnist\
trainData = loadMNISTImages('mnist/train-images-idx3-ubyte');
trainLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte');
trainLabels(trainLabels == ) = ; % Remap to since our labels need to start from %%======================================================================
%% STEP : 训练第一个稀疏自编码器(训练样本集为trainData,看作是无标签训练样本集) % Randomly initialize the parameters
sae1Theta = initializeParameters(hiddenSizeL1, inputSize); % 利用无标签样本集对稀疏自编码器进行学习,学习到的参数存放在向量sae1OptTheta中
% 优化函数的一些参数设置
options.Method = 'lbfgs';
options.maxIter = ; % Maximum number of iterations of L-BFGS to run
options.display = 'on';
% 调用优化函数,得到优化向量sae1OptTheta [sae1OptTheta, ~] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSizeL1, ... %输入维数、输出维数
lambda, sparsityParam, ...
beta, trainData), ...
sae1Theta, options);
%save('sae1OptTheta.mat','sae1OptTheta')
% % 权值可视化(Visualize weights)
% W11 = reshape(sae1OptTheta(:hiddenSizeL1 * inputSize), hiddenSizeL1, inputSize);
% display_network(W11');
% load('sae1OptTheta.mat'); %%======================================================================
%% STEP : 训练第二个稀疏自编码器(训练数据是第一个自编码器提取到的特征) % 求解第一个自编码器的输出sae1Features(维数为hiddenSizeL1)
[sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
inputSize, trainData); % Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1); % 开始训练第二个自编码器,输入维数是hiddenSizeL1,输出维数是hiddenSizeL2,优化向量存放在sae2OptTheta中
[sae2OptTheta, ~] = minFunc( @(p) sparseAutoencoderCost(p, ...
hiddenSizeL1, hiddenSizeL2, ... %输入维数、输出维数
lambda, sparsityParam, ...
beta, sae1Features), ...
sae2Theta, options);
% save('sae2OptTheta.mat','sae2OptTheta')
% % Visualize weights
% % W21 = reshape(sae2OptTheta(:hiddenSizeL2 * hiddenSizeL1), hiddenSizeL2, hiddenSizeL1);
% % display_network(W21'); %无法可视化!!
% load('sae2OptTheta.mat');
%%======================================================================
%% STEP : 训练softmax classifier(它的输入为第二个自编码器提取到的特征sae2Features) % 求解第二个自编码器的输出sae1Features(维数为hiddenSizeL2)
[sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features); % Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, ); % 开始优化softmax classifier,得到优化向量
options.maxIter = ;
softmaxModel = softmaxTrain(size(sae2Features,), numClasses, lambda, ...
sae2Features, trainLabels, options);
saeSoftmaxOptTheta=softmaxModel.optTheta(:);
% load('saeSoftmaxOptTheta.mat') %%======================================================================
%% STEP : 微调多层自编码器 % 利用稀疏自编码(stack)和softmax分类器(saeSoftmaxOptTheta)学习到的参数作为微调模型的初始值
% 稀疏自编码的参数stack
stack = cell(,);%存放稀疏自编码器参数的元胞
stack{}.w = reshape(sae1OptTheta(:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{}.b = sae1OptTheta(*hiddenSizeL1*inputSize+:*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{}.w = reshape(sae2OptTheta(:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{}.b = sae2OptTheta(*hiddenSizeL2*hiddenSizeL1+:*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2);
[stackparams, netconfig] = stack2params(stack);%所有stack转化为向量形式,并提取稀疏自编码器的结构
% 整个模型参数(saeSoftmaxOptTheta+stack)
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ]; % 是否进行梯度检验
DEBUG=;
if DEBUG
checkStackedAECost()
end % 开始进行微调优化 (Use minFunc to minimize the function)
[stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
inputSize, hiddenSizeL2,...%输入层维数、最后一个稀疏编码器隐藏层维数
numClasses, netconfig, ...%稀疏自编码器的结构
lambda, trainData, trainLabels), ...
stackedAETheta, options); %%======================================================================
%% STEP : Test
% 获取有标签样本集
testData = loadMNISTImages('mnist/t10k-images-idx3-ubyte');
testLabels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte');
testLabels(testLabels == ) = ; % Remap to % 进行预测(微调后的)
[pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData);
acc = mean(testLabels(:) == pred(:));% 计算预测精度
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * ); % 进行预测(微调前的)
[pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData);
acc = mean(testLabels(:) == pred(:));% 计算预测精度
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * ); % Accuracy is the proportion of correctly classified images
% The results for our implementation were: % Before Finetuning Test Accuracy: 87.7%
% After Finetuning Test Accuracy: 97.6%
%
% If your values are too low (accuracy less than %), you should check
% your code for errors, and make sure you are training on the
% entire data set of 28x28 training images
% (unless you modified the loading code, this should be the case)
stackedAEPredict.m
% stackedAEPredict: Takes a trained theta and a test data set,
% and returns the predicted labels for each example. % theta: trained weights from the autoencoder
% visibleSize: the number of input units
% hiddenSize: the number of hidden units *at the 2nd layer*
% numClasses: the number of categories
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)). function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data) %% Unroll theta parameter % We first extract the part which compute the softmax gradient
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize); % Extract out the "stack"
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start from . %% 前向传播计算
a{}=data;
depth=numel(netconfig.layersizes);
for i=:depth
a{i+}=sigmoid(bsxfun(@plus,stack{i}.w*a{i},stack{i}.b));
end %% softmax模型的输出Htheta
softmaxData=a{depth+};%softmax的输入即为stack自编码器最后一层的输出
M=softmaxTheta*softmaxData;%矩阵M
M=bsxfun(@minus,M,max(M));%减去行向量α,防止数据溢出
Htheta=bsxfun(@rdivide,exp(M),sum(exp(M)));%softmax模型的假设函数输出 %% 计算Htheta每一列最大元素所在位置,即为该列所对应样本的类别
[~,pred]=max(Htheta); end % You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end
stackedAECost.m
%{
Takes a trained softmaxTheta and a training data set with labels,
and returns cost and gradient using a stacked autoencoder model. Used for finetuning.
输入:
theta:整个网络的权值向量
visibleSize: 网络的输入层维数
hiddenSize: 最后一个稀疏自编码器的隐藏层维数
numClasses: 类别总数
netconfig: the network configuration of the stack
lambda: the weight regularization penalty
data: 训练样本集,data(:,i) is the i-th training example.
labels: 训练样本集的标签, where labels(i) is the label for the i-th training example
输出:
cost:代价函数
grad:梯度向量
%}
function [ cost, grad ] = stackedAECost(theta, ...
inputSize, hiddenSize, ...%输入层维数、最后一个稀疏编码器隐藏层维数
numClasses, netconfig, ...%总类数、稀疏自编码器的结构
lambda, data, labels)
%% 从输入的网络参数向量theta中得到softmax分类器和稀疏自编码器的参数
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize);%softmax的参数矩阵
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig);% Extract out the "stack"
%% 初始化
%样本个数
numCases = size(data, );
%样本标签矩阵groundTruth(即I阵)
groundTruth = full(sparse(labels, :numCases, ));
% softmax分类器的梯度
softmaxThetaGrad = zeros(size(softmaxTheta));
% 稀疏自编码器的梯度(权值w和偏执项b)
stackgrad = cell(size(stack));
for d = :numel(stack)
stackgrad{d}.w = zeros(size(stack{d}.w));
stackgrad{d}.b = zeros(size(stack{d}.b));
end
%% 前向传播算法
% 初始化工作
depth=numel(stack);% 稀疏自编码器隐藏层的层数(the layor of the network)
z=cell(depth+,); % stack网络各层的激励值
a=cell(depth+,); % stack网络各层的激励值
a{}=data; % 输入层数据
% 各稀疏自编码器输出a{},...,a{depth+}
for i=:depth
%各稀疏编码器提取到的features
z{i+}=bsxfun(@plus,stack{i}.w*a{i},stack{i}.b);
a{i+}=sigmoid(z{i+});
end
% softmax分类器的输出Htheta
softmaxData=a{depth+};%softmax的输入即为stack自编码器最后一层的输出
M=softmaxTheta*softmaxData;%矩阵M
M=bsxfun(@minus,M,max(M));%减去行向量α,防止数据溢出
Htheta=bsxfun(@rdivide,exp(M),sum(exp(M)));%softmax分类器的假设函数输出
%% 多层网络代价函数的计算(%要对整个网络的所有参数,包括softmax分类器和自编码器的所有参数)
cost=-sum(sum(groundTruth.*log(Htheta)))/numCases+lambda*sum(softmaxTheta(:).^)/;
%% 梯度计算
% softmax层的梯度
softmaxThetaGrad=-(groundTruth-Htheta)*softmaxData'/numCases+lambda*softmaxTheta;
% 稀疏自编码层
% 敏感度
delta=cell(depth+,);
delta{depth+}=-softmaxTheta'*(groundTruth-Htheta).*a{depth+1}.*(1-a{depth+1});
for i=depth:-:
delta{i}=stack{i}.w'*delta{i+1}.*(a{i}).*(1-a{i});
end
% 梯度值
for i=depth:-:
stackgrad{i}.w=delta{i+}*a{i}'/numCases;
stackgrad{i}.b=sum(delta{i+},)'/numCases;
if size(stackgrad{i}.b,)~=
stackgrad{i}.b=stackgrad{i}.b';
end
end
%% Roll gradient vector
grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)];
end
% You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end
UFLDL教程(六)之栈式自编码器的更多相关文章
- UFLDL教程(一)---稀疏自编码器
神经网络模型 简单的神经网络 前向传播 代价函数 对于单个例子 .其代价函数为: 给定一个包括m个例子的数据集,我们能够定义总体代价函数为: 以上公式中的第一项 是一个均方差项. 第二项是一个规则化 ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...
- Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- C#微信公众号开发系列教程六(被动回复与上传下载多媒体文件)
微信公众号开发系列教程一(调试环境部署) 微信公众号开发系列教程一(调试环境部署续:vs远程调试) C#微信公众号开发系列教程二(新手接入指南) C#微信公众号开发系列教程三(消息体签名及加解密) C ...
- 栈式自动编码器(Stacked AutoEncoder)
起源:自动编码器 单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾. 于是Bengio等人在2007年的 Greedy Layer-Wise Training of Deep Netw ...
- Deep Learning 7_深度学习UFLDL教程:Self-Taught Learning_Exercise(斯坦福大学深度学习教程)
前言 理论知识:自我学习 练习环境:win7, matlab2015b,16G内存,2T硬盘 练习内容及步骤:Exercise:Self-Taught Learning.具体如下: 一是用29404个 ...
- 基于NodeJS的全栈式开发
前言 为了解决传统Web开发模式带来的各种问题,我们进行了许多尝试,但由于前/后端的物理鸿沟,尝试的方案都大同小异.痛定思痛,今天我们重新思考了“前后端”的定义,引入前端同学都熟悉的 NodeJS,试 ...
随机推荐
- 后台进程弹Toast的几种方案
在后台进程弹Toast,使用方案有:由UI线程传入一个Activity參数.View參数或者Handler參数,使用Activity.runOnUiThread(Runnable).View.post ...
- 《细说 new与 malloc 的 10 点区别》
http://www.jobbole.com/members/melonstreet/
- 去掉cajviewer 右上角的“中国知网数字出版物超市
cajviewer软件是一款可以提取pdf字码的软件(即使pdf是扫描版的) 下面是转的一个博文可以去除软件右上角图标的方法: 去掉cajviewer 7.1.2右上角的“中国知网数字出版物超市” 1 ...
- Linux多网卡多IP配置
echo "210 local100" >> /etc/iproute2/rt_tables echo "220 local200" >> ...
- Java基础知识强化之集合框架笔记50:Map集合之Map集合的概述和特点
1. Map集合的概述: public interface Map<K,V> 作为学生来说,是根据学号来区分不同的学生的,那么假设我现在已经知道了学生的学号,我要根据学号去获取学生姓名,请 ...
- iOS UIKit:CollectionView之设计 (1)
collection view(UICollectionView对象)使用灵活和可扩展的布局来描述有序的数据项,其一般情况下以网格的形式来展示内容,但并非一定如此. 1 基础 为了将数据展示在屏幕中, ...
- grep参数说明及常用用法
grep参数说明及常用用法 趁着午休的时间把自己经常使用的一些grep命令整理一下. 方便以后查看. 后续会逐步把awk/sed/find等常用的命令理一理. 增强下记忆. 也算是对得起自己了. ^^ ...
- HDU-1114(背包DP)
Piggy-Bank Problem Description Before ACM can do anything, a budget must be prepared and the necessa ...
- 使用LuaInterface遇到的编码问题
今天使用LuaInterface加载脚本时忽然报“未知字符”错误信息!于是检查文件编码 将其修改为“US ASCII” 就好了.
- 造一个Badge Service(徽章)的轮子
什么是Badge Service 细心的读者朋友一定在很多Github的Repo,npm的package页面看到过诸如 的徽章.这些徽章是干什么用的? 大家看到上文中我引用的Badge的左侧,是Dow ...