一.进程控制块PCB-stack_struct

进程在操作系统中都有一个结构,用于表示这个进程。这就是进程控制块(PCB),在Linux中具体实现是task_struct数据结构,它主要记录了以下信息:

  • 状态信息,例如可执行状态、就绪状态、阻塞状态等。
  • 性质,由于unix有很多变种,进行有自己独特的性质。
  • 资源,资源的链接比如内存,还有资源的限制和权限等。
  • 组织,例如按照家族关系建立起来的树(父进程、子进程等)。

task_struct结构体内容非常庞大,暂时没有去分析源代码,以后有时间再去研究。

二.Linux fork执行的过程

在menu中添加一个fork的系统调用,然后用gdb开始调试.执行以下命令

qemu -kernel linux-3.18./arch/x86/boot/bzImage -initrd rootfs.img -s -s
gdb
file linux-3.18./vmlinux
target remote:

然后在sys_fork、sys_clone处设置断点,再逐步调试,观察fork系统调用的执行过程。

具体分析fork系统调用执行过程.

1.fork、vfork和clone三个系统调用都可以创建一个新进程,而且它们都是通过调用do_fork来实现进程的创建,do_fork通过传递不同的clone_flags来实现fork、clone、vfork。

long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = ;
long nr; /*
1634 * Determine whether and which event to report to ptracer. When
1635 * called from kernel_thread or CLONE_UNTRACED is explicitly
1636 * requested, no event is reported; otherwise, report if the event
1637 * for the type of forking is enabled.
1638 */
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK; if (likely(!ptrace_event_enabled(current, trace)))
trace = ;
}
1650
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace); #进程复制,核心函数
/*
1654 * Do this prior waking up the new thread - the thread pointer
1655 * might get invalid after that point, if the thread exits quickly.
1656 */
if (!IS_ERR(p)) {
struct completion vfork;
struct pid *pid; trace_sched_process_fork(current, p); pid = get_task_pid(p, PIDTYPE_PID);
nr = pid_vnr(pid); if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr); if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
get_task_struct(p);
} wake_up_new_task(p); /* forking complete and child started to run, tell ptracer */
if (unlikely(trace))
ptrace_event_pid(trace, pid); if (clone_flags & CLONE_VFORK) {
if (!wait_for_vfork_done(p, &vfork))
ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
} put_pid(pid);
} else {
nr = PTR_ERR(p);
}
return nr;
}

do_fork()函数的核心是copy_process(),该函数完成了进程创建的绝大部分。

/*
1175 * This creates a new process as a copy of the old one,
1176 * but does not actually start it yet.
1177 *
1178 * It copies the registers, and all the appropriate
1179 * parts of the process environment (as per the clone
1180 * flags). The actual kick-off is left to the caller.
1181 */static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
int retval;
struct task_struct *p; if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
return ERR_PTR(-EINVAL); if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
return ERR_PTR(-EINVAL); /*
1199 * Thread groups must share signals as well, and detached threads
1200 * can only be started up within the thread group.
1201 */
if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
return ERR_PTR(-EINVAL); /*
1206 * Shared signal handlers imply shared VM. By way of the above,
1207 * thread groups also imply shared VM. Blocking this case allows
1208 * for various simplifications in other code.
1209 */
if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
return ERR_PTR(-EINVAL); /*
1214 * Siblings of global init remain as zombies on exit since they are
1215 * not reaped by their parent (swapper). To solve this and to avoid
1216 * multi-rooted process trees, prevent global and container-inits
1217 * from creating siblings.
1218 */
if ((clone_flags & CLONE_PARENT) &&
current->signal->flags & SIGNAL_UNKILLABLE)
return ERR_PTR(-EINVAL); /*
1224 * If the new process will be in a different pid or user namespace
1225 * do not allow it to share a thread group or signal handlers or
1226 * parent with the forking task.
1227 */
if (clone_flags & CLONE_SIGHAND) {
if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
(task_active_pid_ns(current) !=
current->nsproxy->pid_ns_for_children))
return ERR_PTR(-EINVAL);
} retval = security_task_create(clone_flags);
if (retval)
goto fork_out; retval = -ENOMEM;
p = dup_task_struct(current); #为子进程创建一个新的内核栈,复制task_struct和thread_info结构,此时子进程的进程控制块和父进程完全一致。
if (!p)
goto fork_out; ftrace_graph_init_task(p); rt_mutex_init_task(p); #ifdef CONFIG_PROVE_LOCKING
DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
retval = -EAGAIN;
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
}
current->flags &= ~PF_NPROC_EXCEEDED; retval = copy_creds(p, clone_flags);
if (retval < )
goto bad_fork_free; /*
1266 * If multiple threads are within copy_process(), then this check
1267 * triggers too late. This doesn't hurt, the check is only there
1268 * to stop root fork bombs.
1269 */
retval = -EAGAIN;
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count; if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
p->flags |= PF_FORKNOEXEC;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
rcu_copy_process(p);
p->vfork_done = NULL;
spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); p->utime = p->stime = p->gtime = ;
....

通过dup_task_struct()函数,为子进程创建一个新的内核栈,复制task_struct和thread_info结构。

ti=alloc_thread_info_node(task,node);
tsk->stack=ti;
setup_thread_stack(tsk,orig); //这里只是复制了thread_info

重点关注下,fork()创建子进程后,父进程从系统调用中返回,而子进程从哪开始返回.

这主要是在copy_process()中copy_thread()代码.

int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p)
{
struct pt_regs *childregs = task_pt_regs(p);
struct task_struct *tsk;
int err; p->thread.sp = (unsigned long) childregs; #记录进程切换时的堆栈指针
p->thread.sp0 = (unsigned long) (childregs+);
memset(p->thread.ptrace_bps, , sizeof(p->thread.ptrace_bps)); if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, , sizeof(struct pt_regs));
p->thread.ip = (unsigned long) ret_from_kernel_thread;
task_user_gs(p) = __KERNEL_STACK_CANARY;
childregs->ds = __USER_DS;
childregs->es = __USER_DS;
childregs->fs = __KERNEL_PERCPU;
childregs->bx = sp; /* function */
childregs->bp = arg;
childregs->orig_ax = -;
childregs->cs = __KERNEL_CS | get_kernel_rpl();
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
p->thread.io_bitmap_ptr = NULL;
return ;
}
*childregs = *current_pt_regs();#复制内核堆栈
childregs->ax = ; #这也是为什么子进程的fork返回0
if (sp)
childregs->sp = sp; p->thread.ip = (unsigned long) ret_from_fork; #子进程开始执行处
task_user_gs(p) = get_user_gs(current_pt_regs()); p->thread.io_bitmap_ptr = NULL;
tsk = current;
err = -ENOMEM; if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = ;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
} err = ; /*
184 * Set a new TLS for the child thread?
185 */
if (clone_flags & CLONE_SETTLS)
err = do_set_thread_area(p, -,
(struct user_desc __user *)childregs->si, ); if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = ;
}
return err;

然后回到do_fork()函数中,唤醒子进程并开始运行。至此,一个进程创建就完成了。

三.实验总结

中间虽然的很多细节还不是很清楚,但是对linux 创建子进程的大体流程有了一个宏观的认识,更加深刻地理解了底层Linux 内核进程运行的机制。

《Linux内核分析》 week6作业-Linux内核fork()系统调用的创建过程的更多相关文章

  1. 《Linux内核分析》 第四节 扒开系统调用的三层皮(上)

    <Linux内核分析> 第四节 扒开系统调用的三层皮(上) 张嘉琪 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com ...

  2. LINUX内核分析第四周学习总结——扒开系统调用的“三层皮”

    LINUX内核分析第四周学习总结--扒开系统调用的"三层皮" 标签(空格分隔): 20135321余佳源 余佳源 原创作品转载请注明出处 <Linux内核分析>MOOC ...

  3. 《Linux内核分析》 第五节 扒开系统调用的三层皮(下)

    <Linux内核分析> 第五节 扒开系统调用的三层皮(下) 20135307 一.给MenusOS增加time和time-asm命令 给MenuOS增加time和time-asm命令需要 ...

  4. windows7内核分析之x86&x64第二章系统调用

    windows7内核分析之x86&x64第二章系统调用 2.1内核与系统调用 上节讲到进入内核五种方式 其中一种就是 系统调用 syscall/sysenter或者int 2e(在 64 位环 ...

  5. 《linux内核分析》作业一:分析汇编代码

    通过汇编一个简单的C程序,分析汇编代码理解计算机是如何工作的(王海宁) 姓名:王海宁                             学号:20135103 课程:<Linux内核分析& ...

  6. 《Linux内核分析》第五周 扒开系统调用的三层皮(下)

    [刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK FIVE( ...

  7. Linux内核分析——进程的切换和系统的一般执行过程

    进程的切换和系统的一般执行过程 一.进程切换的关键代码switch_to分析 (一)进程调度与进程调度的时机分析 1.不同类型的进程有不同的调度需求 第一种分类: (1)I/O-bound:频繁进行I ...

  8. 20135239 益西拉姆 linux内核分析 进程的切换和系统的一般执行过程

    week 8 进程的切换和系统的一般执行过程 [ 20135239 原文请转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...

  9. Linux内核分析— —进程的切换和系统的一般执行过程

    进程调度的时机 linux进程调度是基于分时和优先级的 中断处理过程(包括时钟中断.I/O中断.系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用s ...

随机推荐

  1. No Entity Framework provider found for the ADO.NET provider with invariant name 'System.Data.SqlClient'

    运行代码是出现了这个错误,No Entity Framework provider found for the ADO.NET provider with invariant name 'System ...

  2. 用c语言程序对显存进行操作

    一.基础研究 我们之前研究过变量.数组.函数和指针,他们都可以看作是内存中存储的一段数据,当程序需要用到它们时,会通过它们的地址找到它们并进行调用,只是调用的用途不同而已:变量和数组元素是作为常量来处 ...

  3. Delphi应用程序的调试(十)调试器选项(在IDE中不要使用异常)

    可在两个级别上设置调试选项:工程级和环境级.在前面的讲解中讲解了工程级调试选项,通过主菜单[Project | Options…]打开如下对话框: 可在Debugger Options对话框中设置全局 ...

  4. mysql rr和rc区别

    <pre name="code" class="html">1. 数据库事务ACID特性 数据库事务的4个特性: 原子性(Atomic): 事务中的 ...

  5. yui--datatable 更新table数据

    使用render可以重新渲染datatable,之前添加的样式等信息也想相应会初始化,另外行定位等也会失效 使用updateRows方法不会删除样式等信息 更新datasource中_oData数据 ...

  6. Mysql 的字符编码机制、中文乱码问题及解决方案【转载】

    本文转载自:http://hi.baidu.com/huabinyin/item/7f51e462df565c97c4d24929.感谢作者及相关博主.        相信很多朋友都会对字符编码敬而远 ...

  7. Java web App 部署静态文件

    以 Tomcat 为例子,静态文件,如 html, css, js ,无需编译,所以只需要把文件复制到 Tomcat/webapps 目录下面某个子目录,便可以了. 例子: 1. 在 Tomcat/w ...

  8. G - Strongly connected - hdu 4635(求连通分量)

    题意:给你一个图,问最多能添加多少条边使图仍为不是强连通图,如果原图是强连通输出 ‘-1’ 分析:先把求出连通分量进行缩点,因为是求最多的添加边,所以可以看成两部分 x,y,只能一部分向另外一部分连边 ...

  9. hyperv虚拟机网络速度慢问题的解决办法

    服务器安装了windows2012R2进行虚拟化,虚拟机也是用的是windows2012R2的操作系统,这样可以一次激活对应的虚拟机. 在使用虚拟机的过程中发现问题,虚拟机主机的网速正常,无论是ftp ...

  10. 总结XX网app中webapp常见的前端错误。

    在2016年12月至2017年1月,这一个月的时间内,我参与了易政网app中webapp前端项目的工作,下面将我在此次项目中犯的错误总结起来,以防下次再犯.也终于知道之前看的文章中的一段话所代表的意义 ...