1/6 LU 分解

         LU 分解可以写成A = LU,这里的L代表下三角矩阵,U代表上三角矩阵。对应的matlab代码如下:

function[L, U] =zlu(A)

% ZLU - LU decomposition for matrix A

% work as gauss elimination

 

[m, n] = size(A);

if m ~= n 

    error('Error, current time only support square matrix');

end

 

L = zeros(n);

U = zeros(n);

 

for k = 1:n-1

    gauss_vector = A(:,k);

    gauss_vector(k+1:end) = gauss_vector(k+1:end) ./ gauss_vector(k);

    gauss_vector(1:k) = zeros(k,1);

    L(:,k) = gauss_vector;

    L(k,k) = 1;

    for l=k+1:n

        A(l,:) = A(l,:) - gauss_vector(l)*A(k,:);

    end

end    

 

U = A;

 

这段代码的目的非常简单,就是使用高斯消元法给出L,U。但是计算的稳定性非常不好,这点可以通过这段代码的分解结果和matlab自带lu的分解结果相比较得出。比较的方法非常简单:就是计算l*u与原始矩阵想减之后的Frobinus范数大小,使用如下的代码做出两个结果的比较:

n = 1000;

my_error = zeros(1, 1000);

sys_error = zeros(1, 1000);

 

for i = 1:n

    test = randn(5);

    [zl, zu] = zlu(test);

    [l, u] = lu(test);

 

    my_error(i) = norm(zl*zu - test, 'fro');

    sys_error(i) = norm(l*u - test, 'fro');

end

 

disp(mean(my_error));

disp(var(my_error));

disp(mean(sys_error));

disp(var(sys_error));

 

在这段代码里面,随机的生成一个5x5的符合高斯分布的矩阵,然后使用自己写的lu分解和matlab自带的lu分解分别给出L和U,再计算norm(L*U - test),从这里就可以看出我们自己计算出来的结果精度和matlab自带的lu真实的差异了。这个差异就体现为这些值的均值和方差。结果如下:

mean of my lu : 13.313846
variance of my lu : 43622.114147
mean of matlab lu : 0.000000
variance of matlab lu : 0.000000

从这个结果可以看出,我们自己写的lu分解的结果在均值和方差上比matlab自带的差了很多。个人认为原因有两点:第一个方法的原因,matlab给出的结果是pivoted LU,第二个是因为实现的原因,matlab基于成熟的LAPACK,肯定会比自己写的更好了。

 

这一步使用PA = LU来完成LU分解。代码如下:

function [P, L, U] = zplu(A)

% pivoted LU decompositon P*A = L*U

 

[m, n] = size(A);

 

if m ~= n

    error('zplu:test', 'current time only support square matrix');

end

 

P = eye(n);

L = zeros(n, n);

 

for k = 1:n-1

 

    %find the largest element in k column of A from row k to n

    [max_value, max_index] = max(A(k:end, k));

    

    max_index = max_index + k - 1;

    if max_index ~= k

        A([k max_index], :) = A([max_index k], :);

        P([k max_index], :) = P([max_index k], :);

        L([k max_index], :) = L([max_index k], :);

    end

    

    if A(k,k) ~= 0

        gauss_vector = A(:,k);

        gauss_vector(k+1:end) = gauss_vector(k+1:end) ./ gauss_vector(k);

        gauss_vector(1:k) = zeros(k,1);

        L(:,k) = gauss_vector;

        L(k, k) = 1;

    

        for l=k+1:n

            A(l,:) = A(l,:) - gauss_vector(l)*A(k,:);

        end

    end

end

U = triu(A);

 

下面是运行前面检测程序的输出:

mean of my lu : 7.803258
variance of my lu : 1450.332510
mean of matlab lu : 0.000000
variance of matlab lu : 0.000000

两个结果相比较可以看到,Matlab的lu一样的稳定,但是使用pivot来调整矩阵A的次序可以极大的提高LU分解的稳定度,这个可以从下降了非常多的方差可以看出。

pivot LU是从k列的k+1到n个元素种选择最大的一个,调换到第k个位置。从我个人的角度理解,除以最大的元素使得高斯变换矩阵中非对角元素全部小于1。由于计算机种存储浮点数的机制,绝对值越靠近0,其精度越高。所以使用pivot这种方法可以极大的提高LU分解的稳定程度。但是也需要指出,使用pivot并不一定能提高LU分解的精度,对于特定的矩阵,不使用pivot说不定可以获得更好的性能。

为了进一步提高提高LU分解的稳定性,可以使用full pivoted LU。分解公式:P*A*Q = L * U; 对应的Matlab代码如下:

 

function [P, Q, L, U] = zflu(A)

%full pivoted LU decomposition

%

% full pivoted LU decomposition

 

[m, n] = size(A);

 

if m ~= n

    error('current only support square matrix')

end

 

P = eye(n);

Q = eye(n);

 

for k=1:n-1

    

    %find the larget element in A(k:n,k:n)

    [max_value, row_index] = max(A(k:n, k:n));

    [max_value, col_index] = max(max_value);

    

    real_row = k-1 + row_index(col_index);

    real_col = k-1 + col_index;

    

    %exchange the row and column of matrix A

    

    if real_row ~= k

        A([k real_row],:) = A([real_row k], :);

        P([k real_row],:) = P([real_row k], :);

    end

    

    if real_col ~= k

        A(:, [k real_col]) = A(:, [real_col k]);

        Q(:, [k real_col]) = Q(:, [real_col k]);

    end

    

    if A(k, k) ~= 0

        rows = k+1:n;

        A(rows, k) = A(rows, k) ./ A(k, k);

        A(rows, rows) = A(rows, rows) - A(rows, k)*A(k, rows);

    end

end

 

L = tril(A);

for k=1:n

    L(k, k) = 1;

end

U = triu(A);

 

跑完test之后的结果如下:

mean of my lu : 7.77222e-16
variance of my lu : 4.3478e-29
mean of matlab lu : 3.69764e-16
variance of matlab lu : 2.03659e-32

可以看到使用full pivoted LU 分解可以在很大程度上保证分解的稳定性,即便是使用我们自己写的代码。但是即便如此,仍然推荐使用LAPACK中的代码,因为那里面的代码是经过严格的测试和分析的,在各种一场情况下应该都有很好的表现。

这里所介绍的LU分解可以使用另外一种基于GaxPy形式的运行,将在下面介绍。

LU分解(1)的更多相关文章

  1. matlab 求解线性方程组之LU分解

    线性代数中的一个核心思想就是矩阵分解,既将一个复杂的矩阵分解为更简单的矩阵的乘积.常见的有如下分解: LU分解:A=LU,A是m×n矩阵,L是m×m下三角矩阵,U是m×n阶梯形矩阵 QR分解: 秩分解 ...

  2. LU分解,Javascript代码

    ///A 为矩阵,这里写成一维数组,如 [1],[1,2,3,4] function GetLU(a) { var n = a.length;//矩阵的总数据数目 var s = Math.sqrt( ...

  3. matlab实现高斯消去法、LU分解

    朴素高斯消去法: function x = GauElim(n, A, b) if nargin < 2 for i = 1 : 1 : n for j = 1 : 1 : n A(i, j) ...

  4. LU分解(2)

    接着上次LU分解的讲解,这次给出使用不同的计算LU分解的方法,这种方法称为基于GaxPy的计算方法.这里需要了解lapapck中的一些函数.lapack中有一个函数名为gaxpy,所对应的矩阵计算公式 ...

  5. MATLAB矩阵的LU分解及在解线性方程组中的应用

    作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [ ...

  6. 线性代数笔记10——矩阵的LU分解

    在线性代数中, LU分解(LU Decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个单位下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积).LU分解主要应用在数值分析 ...

  7. 矩阵分解---QR正交分解,LU分解

    相关概念: 正交矩阵:若一个方阵其行与列皆为正交的单位向量,则该矩阵为正交矩阵,且该矩阵的转置和其逆相等.两个向量正交的意思是两个向量的内积为 0 正定矩阵:如果对于所有的非零实系数向量x ,都有 x ...

  8. 计算方法 -- 解线性方程组直接法(LU分解、列主元高斯消元、追赶法)

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstdlib> ...

  9. 矩阵LU分解分块算法实现

    本文主要描述实现LU分解算法过程中遇到的问题及解决方案,并给出了全部源代码. 1. 什么是LU分解? 矩阵的LU分解源于线性方程组的高斯消元过程.对于一个含有N个变量的N个线性方程组,总可以用高斯消去 ...

随机推荐

  1. [转] Linux TCP/IP网络小课堂:net-tools与iproute2大比较

    PS:netstat选项是-planet,方便记忆 http://os.51cto.com/art/201409/450886.htm 如今许多系统管理员仍结合使用ifconfig.route.arp ...

  2. redis 多实例配置

    (redis的安装, 配置, 登陆等基础不再多说, 网上很多资料的, 这里只说个人对redis多实例的理解与配置) 我自己使用的redis版本是 2.8.13, 环境是 ubuntu 个人对多实例的理 ...

  3. Another app is currently holding the yum lock; waiting for it to exit... 怎么解决

    Another app is currently holding the yum lock; waiting for it to exit... 怎么解决 这个问题说明你的程序yum程序正在运行,必须 ...

  4. oracle 自治事物 -- autonomous transaction

    一 使用规则 : 在begin 之前申明  : PRAGMA AUTONOMOUS_TRANSACTION; 二 使用理解:autonomous transaction 是一个独立的事务,这一点是理解 ...

  5. CentOS6.6x86_64 部署 Nginx1.62+MySQL5.6.20+PHP5.6.4

    准备工作 切换到管理员身份 su - 安装编译扩展 yum install -y gcc-c++ 创建数据库目录.代码目录 mkdir /mnt/data /mnt/www 安装Nginx 1.6.2 ...

  6. Java编程思想-泛型-泛型方法

    代码示例如下: package generics; //: generics/GenericMethods.java public class GenericMethods<A> { // ...

  7. ASP.NET C#使用JavaScriptSerializer实现序列化与反序列化得到JSON

    在JavaScriptSerializer中,我们可以看到下面可以使用的方法或者构造函数,它们都是实例方法: Member Description JavaScriptSerializer() 构造函 ...

  8. .NET获取机器信息

    /// <summary> /// using System.Web; /// using System.Management; /// </summary> public s ...

  9. 【转】 Xcode基本操作

    原文: http://blog.csdn.net/phunxm/article/details/17044337 1.IDE概览 Gutter & Ribbon 焦点列:灰色深度与代码嵌套深度 ...

  10. 用css样式,为表格加入边框

    Table 表格在没有添加 css 样式之前,是没有边框的.这样不便于我们后期合并单元格知识点的讲解,所以在这一节中我们为表格添加一些样式,为它添加边框. 在右侧代码编辑器中添加如下代码: <s ...