Description

     有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边的费用和*n-1条边的时间和,你的任务是求一个方案使得v最小

Input

第一行两个整数n,m,接下来每行四个整数a,b,c,t,表示有一条公路从城市a到城市b需要t时间和费用c

Output

【output】timeismoney.out
仅一行两个整数sumc,sumt,(sumc表示使得v最小时的费用和,sumc表示最小的时间和) 如果存在多个解使得sumc*sumt相等,输出sumc最小的

Sample Input

5 7
0 1 161 79
0 2 161 15
0 3 13 153
1 4 142 183
2 4 236 80
3 4 40 241
2 1 65 92

Sample Output

279 501

HINT

【数据规模】

1<=N<=200

1<=m<=10000

0<=a,b<=n-1

0<=t,c<=255

有5%的数据m=n-1

有40%的数据有t=c

对于100%的数据如上所述

 
题解:
终于知道什么是最小乘积生成树了
其实hnoi的画框 http://www.cnblogs.com/chenyushuo/p/5066481.html 也用了它的思想
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 205
#define maxm 10005
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int n,m;
int fa[maxn];
int u[maxm],v[maxm],val[maxm],tim[maxm],cost[maxm];
struct Point{
int x,y;
bool operator==(Point b){return x==b.x&&y==b.y;}
}st,ed,ans;
struct Edge{
int u,v,val,id;
}edge[maxm];
bool cmp(Edge a,Edge b){return a.val<b.val;}
int find(int x){return x==fa[x]?fa[x]:fa[x]=find(fa[x]);}
Point kruskal(){
for (int i=;i<=m;i++) edge[i]=(Edge){u[i],v[i],val[i],i};
sort(edge+,edge+m+,cmp);
for (int i=;i<=n;i++) fa[i]=i;
int cnt=;
Point ans; ans=(Point){,};
for (int i=;i<=m&&cnt<n;i++)
if (find(edge[i].u)!=find(edge[i].v)){
fa[find(edge[i].u)]=find(edge[i].v);
cnt++,ans.x+=tim[edge[i].id],ans.y+=cost[edge[i].id];
}
return ans;
}
Point calc(Point a,Point b){return a.x*a.y<b.x*b.y?a:b;}
Point solve(Point st,Point ed){
Point mid;
for (int i=;i<=m;i++) val[i]=tim[i]*(st.y-ed.y)-cost[i]*(st.x-ed.x);
mid=kruskal();
if (st==mid||ed==mid) return calc(st,ed);
return calc(solve(st,mid),solve(mid,ed));
}
int main(){
read(n),read(m);
for (int i=;i<=m;i++) read(u[i]),read(v[i]),u[i]++,v[i]++,read(tim[i]),read(cost[i]);
for (int i=;i<=m;i++) val[i]=tim[i];
st=kruskal();
for (int i=;i<=m;i++) val[i]=cost[i];
ed=kruskal();
ans=solve(st,ed);
printf("%d %d\n",ans.x,ans.y);
return ;
}

bzoj2395: [Balkan 2011]Timeismoney的更多相关文章

  1. 【最小乘积生成树】bzoj2395[Balkan 2011]Timeismoney

    设每个点有x,y两个权值,求一棵生成树,使得sigma(x[i])*sigma(y[i])最小. 设每棵生成树为坐标系上的一个点,sigma(x[i])为横坐标,sigma(y[i])为纵坐标.则问题 ...

  2. BZOJ2395 [Balkan 2011]Timeismoney 【最小乘积生成树】

    题目链接 BZOJ2395 题意:无向图中每条边有两种权值,定义一个生成树的权值为两种权值各自的和的积 求权值最小的生成树 题解 如果我们将一个生成树的权值看做坐标,那么每一个生成树就对应一个二维平面 ...

  3. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  4. Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)

    问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...

  5. bzoj2395 [Balkan 2011]Timeismoney(最小乘积生成树+计算几何)

    题意 每条边有两个权值\(c,t\),请求出一颗生成树,使得\(\sum c\times \sum t\)最小 题解 为什么生成树会和计算几何扯上关系-- 对于每棵树,设\(x=c,y=t\),我们可 ...

  6. 【BZOJ2395】[Balkan 2011]Timeismoney

    [BZOJ2395][Balkan 2011]Timeismoney 题面 \(darkbzoj\) 题解 如果我们只有一个条件要满足的话直接最小生成树就可以了,但是现在我们有两维啊... 我们将每个 ...

  7. BZOJ2395:[Balkan 2011]Timeismoney——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2395 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市 ...

  8. 【BZOJ】2395: [Balkan 2011]Timeismoney

    题解 最小乘积生成树! 我们把,x的总和和y的总和作为x坐标和y左边,画在坐标系上 我们选择两个初始点,一个是最靠近y轴的A,也就是x总和最小,一个是最靠近x轴的B,也就是y总和最小 连接两条直线,在 ...

  9. bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...

随机推荐

  1. JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误

    今天尝试使用JUnit,下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribi ...

  2. C语言堆内存管理上出现的问题,内存泄露,野指针使用,非法释放指针

    C语言堆内存管理上出现的问题,内存泄露,野指针使用,非法释放指针 (1)开辟的内存没有释放,造成内存泄露 (2)野指针被使用或释放 (3)非法释放指针 (1)开辟的内存没有释放.造成内存泄露,以下的样 ...

  3. OpenCV 2.4.9

    2014.4.25 感谢那些參加开发.发送错误报告以及通过其它方式帮助我们的全部人和公司. 源代码如今已经可以从SourceForge和Github上下载了. 2.4.9版本号的帮助文章也更新到如今的 ...

  4. JAVA操作Excel时文字自适应单元格的宽度设置方法

    使用JAVA操作Excel通常都使用JXL,方法很简单网上也有很多的教程,然后往往一些细节性的问题却导致我们这些Programmer苦恼不已.这两天帮一个朋友做一个Excel表格自动生成的小软件,就遇 ...

  5. [转] 「指尖上的魔法」 - 谈谈 React Native 中的手势

    http://gold.xitu.io/entry/55fa202960b28497519db23f React-Native是一款由Facebook开发并开源的框架,主要卖点是使用JavaScrip ...

  6. 编写android的widget

    以前对这个东西很感兴趣,因为确实方便,如今有时间了来做一个例子 首先要定义一个layout(widgetview.xml)和一个配置文件(widgetconfig.xml) <?xml vers ...

  7. Linux Increase The Maximum Number Of Open Files / File Descriptors (FD)

    How do I increase the maximum number of open files under CentOS Linux? How do I open more file descr ...

  8. 10.30 morning

    P75竞赛时间: ????年??月??日??:??-??:?? 注意事项(请务必仔细阅读) [ 问题描述] 从1 − N中找一些数乘起来使得答案是一个完全平方数,求这个完全平方数最大可能是多少.[输入 ...

  9. c# 的导入功能SqlBulkCopy

    private static void DataTableToSQLServer( DataTable dt) { string connectionString = GetConnectionStr ...

  10. c#正则表达式采集数据

    protected void Page_Load(object sender, EventArgs e){ StringBuilder MyStringBuilder = new StringBuil ...