1.概述

  目前,Kafka 官网最新版[0.10.1.1],已默认将消费的 offset 迁入到了 Kafka 一个名为 __consumer_offsets 的Topic中。其实,早在 0.8.2.2 版本,已支持存入消费的 offset 到Topic中,只是那时候默认是将消费的 offset 存放在 Zookeeper 集群中。那现在,官方默认将消费的offset存储在 Kafka 的Topic中,同时,也保留了存储在 Zookeeper 的接口,通过 offsets.storage 属性来进行设置。

2.内容

  其实,官方这样推荐,也是有其道理的。之前版本,Kafka其实存在一个比较大的隐患,就是利用 Zookeeper 来存储记录每个消费者/组的消费进度。虽然,在使用过程当中,JVM帮助我们完成了自一些优化,但是消费者需要频繁的去与 Zookeeper 进行交互,而利用ZKClient的API操作Zookeeper频繁的Write其本身就是一个比较低效的Action,对于后期水平扩展也是一个比较头疼的问题。如果期间 Zookeeper 集群发生变化,那 Kafka 集群的吞吐量也跟着受影响。

  在此之后,官方其实很早就提出了迁移到 Kafka 的概念,只是,之前是一直默认存储在 Zookeeper集群中,需要手动的设置,如果,对 Kafka 的使用不是很熟悉的话,一般我们就接受了默认的存储(即:存在 ZK 中)。在新版 Kafka 以及之后的版本,Kafka 消费的offset都会默认存放在 Kafka 集群中的一个叫 __consumer_offsets 的topic中。

  当然,其实她实现的原理也让我们很熟悉,利用 Kafka 自身的 Topic,以消费的Group,Topic,以及Partition做为组合 Key。所有的消费offset都提交写入到上述的Topic中。因为这部分消息是非常重要,以至于是不能容忍丢数据的,所以消息的 acking 级别设置为了 -1,生产者等到所有的 ISR 都收到消息后才会得到 ack(数据安全性极好,当然,其速度会有所影响)。所以 Kafka 又在内存中维护了一个关于 Group,Topic 和 Partition 的三元组来维护最新的 offset 信息,消费者获取最新的offset的时候会直接从内存中获取。

3.实现

  那我们如何实现获取这部分消费的 offset,我们可以在内存中定义一个Map集合,来维护消费中所捕捉到 offset,如下所示:

protected static Map<GroupTopicPartition, OffsetAndMetadata> offsetMap = new ConcurrentHashMap<>();

  然后,我们通过一个监听线程来更新内存中的Map,代码如下所示:

private static synchronized void startOffsetListener(ConsumerConnector consumerConnector) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(consumerOffsetTopic, new Integer(1));
KafkaStream<byte[], byte[]> offsetMsgStream = consumerConnector.createMessageStreams(topicCountMap).get(consumerOffsetTopic).get(0); ConsumerIterator<byte[], byte[]> it = offsetMsgStream.iterator();
while (true) {
MessageAndMetadata<byte[], byte[]> offsetMsg = it.next();
if (ByteBuffer.wrap(offsetMsg.key()).getShort() < 2) {
try {
GroupTopicPartition commitKey = readMessageKey(ByteBuffer.wrap(offsetMsg.key()));
if (offsetMsg.message() == null) {
continue;
}
OffsetAndMetadata commitValue = readMessageValue(ByteBuffer.wrap(offsetMsg.message()));
offsetMap.put(commitKey, commitValue);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}

  在拿到这部分更新后的offset数据,我们可以通过 RPC 将这部分数据共享出去,让客户端获取这部分数据并可视化。RPC 接口如下所示:

namespace java org.smartloli.kafka.eagle.ipc

service KafkaOffsetServer{
string query(1:string group,2:string topic,3:i32 partition),
string getOffset(),
string sql(1:string sql),
string getConsumer(),
string getActiverConsumer()
}

  这里,如果我们不想写接口来操作 offset,可以通过 SQL 来操作消费的 offset 数组,使用方式如下所示:

  • 引入依赖JAR
<dependency>
<groupId>org.smartloli</groupId>
<artifactId>jsql-client</artifactId>
<version>1.0.0</version>
</dependency>
  • 使用接口
JSqlUtils.query(tabSchema, tableName, dataSets, sql);

  tabSchema:表结构;tableName:表名;dataSets:数据集;sql:操作的SQL语句。

4.预览

  消费者预览如下图所示:

  正在消费的关系图如下所示:

  消费详细 offset 如下所示:

  消费和生产的速率图,如下所示:

5.总结

  这里,说明一下,当 offset 存入到 Kafka 的topic中后,消费线程ID信息并没有记录,不过,我们通过阅读Kafka消费线程ID的组成规则后,可以手动生成,其消费线程ID由:Group+ConsumerLocalAddress+Timespan+UUID(8bit)+PartitionId,由于消费者在其他节点,我们暂时无法确定ConsumerLocalAddress。最后,欢迎大家使用 Kafka 集群监控 ——[ Kafka Eagle ],[ 操作手册 ]。

6.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

Kafka Offset Storage的更多相关文章

  1. Kafka Offset 1

    Kafka Offset Storage   1.概述 目前,Kafka 官网最新版[0.10.1.1],已默认将消费的 offset 迁入到了 Kafka 一个名为 __consumer_offse ...

  2. How Kafka’s Storage Internals Work

    In this post I'm going to help you understand how Kafka stores its data. I've found understanding th ...

  3. Kafka Offset相关命令总结

    Kafka Offset相关命令总结 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查询topic的offset的范围 1>.查询某个topic的offset的最小值 [ ...

  4. kafka集群监控工具之三--kafka Offset Monitor

    1.介绍 一般情况下,功能简单的kafka项目  使用运维命令+kafka Offset Monitor 就足够用了. 2.使用2.1 部署 github下载jar包 KafkaOffsetMonit ...

  5. kafka offset的存储问题

    注意:从kafka-0.9版本及以后,kafka的消费者组和offset信息就不存zookeeper了,而是存到broker服务器上,所以,如果你为某个消费者指定了一个消费者组名称(group.id) ...

  6. kafka offset 设置

    from kafka import KafkaConsumer from kafka import TopicPartition from kafka.structs import OffsetAnd ...

  7. 关于 Kafka offset

    查询topic的offset的范围 用下面命令可以查询到topic:Mytopic broker:SparkMaster:9092的offset的最小值: bin/kafka-run-class.sh ...

  8. Spark createDirectStream 维护 Kafka offset(Scala)

    createDirectStream方式需要自己维护offset,使程序可以实现中断后从中断处继续消费数据. KafkaManager.scala import kafka.common.TopicA ...

  9. using kafkacat reset kafka offset

    1. install kafkacat Ubuntu apt-get install kafkacat CentOS install deepenency yum install librdkafka ...

随机推荐

  1. 表单中Readonly和Disabled的区别(转)

    今天做form提交的时候,用到了disabled,form提交的时候怎么获取都是null,后来用hidden解决了这个问题,但是考虑到为什么,最后找到了原因,转载一篇文章,说明一下 原文:http:/ ...

  2. [Ember] Creating Your First Ember.js Project with Ember-CLI

    In this lesson, we'll setup Ember-CLI and use it to create and run our first Ember.js project. Insta ...

  3. PERCONA-TOOLKIT 工具的安装与使用2

    [root@server-mysql ~]# cd /usr/bin [root@server-mysql bin]# ls pt* pt-align pt-duplicate-key-checker ...

  4. SpannableString使用详解

    TextView算是android开发中最最常用的控件了,有的时候,我们要给一个TextView中的显示的文字设置不同的样式或者响应事件,比如同一个TextView中,有的字是红色,有的字是蓝色,有的 ...

  5. Android(java)学习笔记142:使用Sqlite基本流程

  6. Android 开发第二天

    开发入门HelloWorld 首先打开开发工具 第一步 第二步 效果图 以后可以点击一直下去 第三步骤介绍一下里面项目的作用 SRC是用来保存源代码的东西MainAcrivity.java主视图res ...

  7. 通过文件读写方式实现Matlab和Modelsim的联合仿真

    虽然Modelsim的功能非常强大,仿真的波形可以以多种形式进行显示,但是当涉及到数字信号处理的算法的仿真验证的时候,则显得有点不足.而进行数字信号处理是Matlab的强项,不但有大量的关于数字信号处 ...

  8. cognos 10.2.2 导入samples数据源报错解决

    操作系统:windows 2008R2 X64 数据库:oracle 10.2.0.1 X32 sid:cognosdb86 安装完samples后,执行IBM安装目录webcontent\sampl ...

  9. swift入门-day01-基本语法

    主要内容: 1.常量和变量 2.Optional 3.控制流 4.循环 5.字符串 6.集合 变量和常量 定义 let 定义常量,一经赋值不允许再修改 var 定义变量,赋值之后仍然可以修改 自动推导 ...

  10. ReactNative-----环境搭建二(android)

    一.初始化一个ReactNative项目 在指定目录运行命令:react-native init Vince(项目名称)  //其过程就是在使用CLI工具构建项目, 命令行代码 F:\React> ...