The Bellman-Ford algorithm

This algorithm deals with the general case, where G is a directed, weight graph, and it can contains negative edge weigths, cycles and even negative-weight cycles. It runs in O(VE) time, which means O(V^3) when the graph is dense.
This algorithm detects cycles by checking "v.d > u.d + w(u, v)", this is viable because if there are no negative-weight cycles, and there is an edge which satisfies "v.d > u.d + w(u, v)", v.d would be replaced by u.d + w(u, v) which is exactly what Relax(u,v, w) does. Thus at the time of checking all edges would satisfiy "v.d <= u.d + w(u, v)". Consider the Relax(u,v,w) procedure as "If there are still space for optimizing, then optimize it."
If there are negative-weight cycles, we can consider this as there are infinite optimizing space which can never be fulled exploited. So there will always be some edge whose shortest distance can still be optimized after the "enough" Relax process.
The Bellman-Ford algorithm的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
- ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...
- poj3259 bellman——ford Wormholes解绝负权问题
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 35103 Accepted: 12805 Descr ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
随机推荐
- Java代码安全测试解决方案
Java代码安全测试解决方案: http://gdtesting.com/product.php?id=106
- web项目设计与开发——DBHelper
学习web项目设计与开发主要是在上学期web程序开发的基础上添上了思想和更深的理解. 在学习之前,我们需要下载好相关的软件——MyEclipse以及配置文件JDK.tomcat.再添加除MyEclip ...
- 实现输出h264直播流的rtmp服务器 flash直播服务器
http://www.cnblogs.com/haibindev/archive/2012/04/16/2450989.html 实现输出h264直播流的rtmp服务器 RTMP(Real Time ...
- Oracle抓取表结构的语句
oracle --------------------------------------- SELECT case when t.COLUMN_ID=1 then t.table_name en ...
- oracle级联删除 触发器
CREATE TABLE STUDENT( --创建学生表 ID NUMBER(10) PRIMARY KEY, --主键ID SNAME VARCHAR2(20), CLASSNAME V ...
- IOS 高级开发 runtime(二)
二.移魂大法 使用runtime还可以交换两个函数.先贴上代码和执行结果. #import <Foundation/Foundation.h> @interface DZLPerson : ...
- java Email发送及中文乱码处理。
public class mail { private String pop3Server=""; private String smtpServer=""; ...
- redis基本数据类型【3】-List类型
列表类型采用双向链表实现的,借助列表类型redis还可以作为队列使用,一个列表类型key最多能容纳2^32-1个元素 1.向列表两端增加元素 #向左边增加元素,返回增加后列表的长度 lpush key ...
- UVA 1401 Remember the Word(用Trie加速动态规划)
Remember the Word Neal is very curious about combinatorial problems, and now here comes a problem ab ...
- GIS科研站
http://www.3sbase.com/3sbase/ 近年来,地理信息科学发展迅猛,科研人员日益增多,但目前尚缺乏良好的交流平台,致使优秀的科研成果难以推广.同时,对于大量的GIS学生而言,对国 ...