数论这个东西吧,虽说也是高中IMOer玩的数学游戏,颇具美学性的证明比较多。就目前所知,它在算法里是一些加密技术的基础,不多言,开始具体题目的分析。

问题一:已知数列{an},且a0 = 2 , a1 = 1 , a(n+1) = an + a(n-1),证明:若p为a(2k) - 2的素因子,则p也为a(2k+1) - 1的素因子。

分析:通过已知条件,有p | (a(2k) - 2) , 联系其递推式,则有p | {[a(2k+1)-1] - [a(2k-1)+1]}。接下来的部分解释考验数学观察力的时候了,通过计算an各项,我们会归纳出递推式的另外形式——a(2k-1)a(ak+1) = a(2k)^2 - 5。

∴[a(2k+1)-1] * [a(2k-1)+1] = a(2k)^2 - 6 + a(2k+1) - a(2k-1)

=a(2k)^2 +a(2k) - 6

= [a(2k) - 2][a(2k)+3]

∵p | (a(2k) - 2)

∴p | [a(2k+1)-1] * [a(2k-1)+1]

又∵p | {[a(2k+1)-1] - [a(2k-1)+1]}

∴p | a(2k+1)-1  且 p |  a(2k-1)+1

证毕。

《Mathematical Olympiad——数论》——整除的更多相关文章

  1. 《Mathematical Olympiad——组合数学》——染色问题

    恢复  继续关于<Mathematical Olympiad——组合数学>中问题的分析,这一篇文章将介绍有关染色的问题. 问题一: 将一些石头放入10行14列的矩形方格表内,允许在每个单元 ...

  2. 数学--数论--整除分块(巨TM详细,学不会,你来打我)

    1.概念 从一道例题说起 在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题: 已知正整数n,求∑i ...

  3. 《Mathematical Olympiad——组合数学》——操作和游戏

    这篇文章,我们开始对奥数中有关操作和游戏的问题进行分析和讨论,其实在信息学竞赛中涉及到的一些博弈问题(分析必胜策略)的问题(例如巴什博弈.尼姆博弈),本质上来讲,就是组合数学当中的组合游戏,并不是真正 ...

  4. 《Mathematical Olympiad——组合数学》——抽屉原理

    抽屉原理可以说是组合数学中最简单易懂的一个原理了,其最简单最原始的一个表达形式:对于n本书放到n-1个抽屉中,保证每个抽屉都要有书,则必存在一个抽屉中有2本书.但是这个简单的原理在很多问题中都能够巧妙 ...

  5. 数论整除——cf1059D

    用map是卡着过去的..题解用vector+离散化后常数小了十倍.. 总之就是把所有模数给保存下来然后离散化,再去匹配一下即可,最后有个细节 自己的 #include<bits/stdc++.h ...

  6. 经典书Discrete.Mathematics上的大神

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  7. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  8. 网络找的 关于 “中吹” Janus Dongye

    看了这篇文章,感觉错过了一个精彩的人生. Janus Dongye, Coding Peasant at Universityof Cambridge (2012-present)(剑桥码农,2012 ...

  9. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

随机推荐

  1. java判断字符串是否为空的方法总结

    http://blog.csdn.net/qq799499343/article/details/8492672 以下是java 判断字符串是否为空的四种方法: 方法一: 最多人使用的一个方法, 直观 ...

  2. Android之使用SharedPreferences保存用户偏好参数

    在Android应用中,我们常需要记录用户设置的一些偏好参数,,此时我们就需要用SharedPreferences和Editor将这些信息保存下来,在下次登录时读取. SharedPreference ...

  3. sql语句中like的使用

    先看一道题: 写出一条sql语句,找出表B中 字段Value中不全是字母 数字 下划线的数据 初看这道题,我们想到可以用like去进行模糊匹配,找出想要的结果.但是有一个地方需要注意:如果想在SQL ...

  4. escape character.

    /* 转义字符:通过\ 来转变后面字母或者符号的含义. \n:换行. \b:退格.相当于backspace. \r:按下回车键.window系统,回车符是由两个字符来表示\r\n. \t:制表符.相当 ...

  5. MongoDB_1

    突然想去看下MongoDB的东西,于是有了这篇文章.其实很早以前就看过一些关于NoSql的文章,还记得当时里面有介绍MongoDB的,多瞅了2眼,并且在Window下安装了MongoDB的驱动,小玩了 ...

  6. ASP.NET 3.5路由总结篇

    URL Routing是非常重要的一块技术体系,笔者将URL Routing的知识进行梳理后得出本文,旨在同大家分享,希望能够起到抛砖引玉的作用. 1.    什么是URL Routing? 所谓UR ...

  7. OC中的SEL解析

    OC中的SEL对象即selector对象,用来保存一个方法的地址.下面通过一个Demo来解析SEL的原理.创建一个Person类,Person.h中: #import <Foundation/F ...

  8. JavaScript Date(日期) 对象

    日期对象用于处理日期和时间. 如何使用 Date() 方法获得当日的日期. getFullYear()使用 getFullYear() 获取年份. getTime()getTime() 返回从 197 ...

  9. JQuery select控件的相关操作

    JQuery获取和设置Select选项方法汇总如下: 获取select 先看看下面代码: $("#select_id").change(function(){//code...}) ...

  10. jquery获取元素的所有宽高(包括内边距和外边距)

    width() - 返回元素的宽度.height() - 返回元素的高度.innerWidth() 方法返回元素的宽度(包括内边距).                    innerHeight() ...