Description

设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作:

1. MODIFY id x: 将 a_{id} 修改为 x.
2. QUERY x: 求最小的整数 p (0 <= p < n),使得 gcd(a_0, a_1, ..., a_p) * XOR(a_0, a_1, ..., a_p) = x. 其中 XOR(a_0, a_1, ..., a_p) 代表 a_0, a_1, ..., a_p 的异或和,gcd表示最大公约数。

Input

输入数据的第一行包含一个正整数 n.

接下来一行包含 n 个正整数 a_0, a_1, ..., a_{n - 1}.
之后一行包含一个正整数 q,表示询问的个数。
之后 q 行,每行包含一个询问。格式如题目中所述。

Output

对于每个 QUERY 询问,在单独的一行中输出结果。如果不存在这样的 p,输出 no.

分块维护 块内gcd 以及 块内出现的每个异或前缀和及位置,修改可以暴力重构整个块,查询则利用gcd的性质,由于前缀gcd的取值种数是对数级的,对前缀gcd不变的块二分查询,前缀gcd改变的块暴力计算,总复杂度约为O(nsqrt(n)log(max(a_i)))

#include<cstdio>
#include<cmath>
#include<algorithm>
char buf[],*ptr=buf-;
template<class T>
void _(T&x){
int c=*++ptr;
x=;
while(c<)c=*++ptr;
while(c>)x=x*+c-,c=*++ptr;
}
int _c(){
int c=*++ptr;
while(c>'Z'||c<'A')c=*++ptr;
int r=c;
while(c>='A'&&c<='Z')c=*++ptr;
return r;
}
bool dt[];
int n,q,a[],B,id[],ls[],rs[],gs[];
int xa[];
struct pos{
int x,y;
bool operator<(pos w)const{return y!=w.y?y<w.y:x<w.x;}
}vs[];
int gcd(int a,int b){
for(int c;b;c=a,a=b,b=c%b);
return a;
}
int bit[];
void xadd(int w,int a){
for(;w<=n;w+=w&-w)bit[w]^=a;
}
int xsum(int w){
int s=;
for(;w;w-=w&-w)s^=bit[w];
return s;
}
int main(){
fread(buf,,sizeof(buf),stdin);
_(n);
B=sqrt(n);
for(int i=;i<=n;++i)_(a[i]),id[i]=(i-)/B,xadd(i,a[i]);
for(int i=;i<=id[n];++i)ls[i]=i*B+,rs[i]=ls[i]+B-,dt[i]=;
rs[id[n]]=n;
for(_(q);q;--q){
if(_c()=='M'){
int x,y,z;
_(x);_(y);
++x;
z=a[x]^y;
xadd(x,z);
a[x]=y;
int b=id[x];
dt[b]=;
for(int i=b+;i<=id[n];++i)xa[i]^=z;
}else{
long long x;
_(x);
for(int i=,gl=;i<=id[n];++i){
if(dt[i]){
dt[i]=xa[i]=gs[i]=;
int sl=xsum(ls[i]-);
for(int j=ls[i];j<=rs[i];++j){
gs[i]=gcd(gs[i],a[j]);
sl^=a[j];
vs[j]=(pos){j,sl};
}
std::sort(vs+ls[i],vs+rs[i]+);
}
int g=gcd(gl,gs[i]);
if(gl!=g){
int sl=xsum(ls[i]-);
for(int j=ls[i];j<=rs[i];++j){
gl=gcd(gl,a[j]);
sl^=a[j];
if(1ll*gl*sl==x){
printf("%d\n",j-);
goto o;
}
}
}else if(x%gl==&&x/gl<){
int z=x/gl^xa[i];
pos*it=std::lower_bound(vs+ls[i],vs+rs[i]+,(pos){,z});
if(it!=vs+rs[i]+&&it->y==z){
printf("%d\n",it->x-);
goto o;
}
}
}
puts("no");
o:;
}
}
return ;
}

bzoj4028: [HEOI2015]公约数数列的更多相关文章

  1. [BZOJ4028][HEOI2015]公约数数列(分块)

    先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...

  2. BZOJ4028 HEOI2015公约数数列(分块)

    前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...

  3. 【BZOJ4028】[HEOI2015]公约数数列(分块)

    [BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...

  4. 【BZOJ4028】[HEOI2015]公约数数列 分块

    [BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...

  5. BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec   ...

  6. BZOJ 4028: [HEOI2015]公约数数列 分块

    4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...

  7. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  8. luogu P4108 [HEOI2015]公约数数列——solution

    -by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...

  9. [BZOJ4028][HAOI2015]公约数数列[分块+分析暴力]

    题意 题目链接 分析 首先明确 \(xor\) 运算和 \(\rm gcd\) 没有联系! 注意到一个数字取 \(\rm gcd\) 且保证每次取 \(\rm gcd\) 值都会变小的话,最多取 \( ...

随机推荐

  1. java 从jar包中读取资源文件

    在代码中读取一些资源文件(比如图片,音乐,文本等等),在集成环境(Eclipse)中运行的时候没有问题.但当打包成一个可执行的jar包(将资源文件一并打包)以后,这些资源文件找不到,如下代码: Jav ...

  2. css布局小技巧 2016.03.06

    偶遇一个可爱的css布局学习网站,立刻学起来哟- max-width: 当页面左右宽度缩小时,为了避免出现左右滚动条的糟糕体验,就可以用到max-width啦!页面比宽度小时,会自动缩小哦- max- ...

  3. 【算法】数组与矩阵问题——找到无序数组中最小的k个数

    /** * 找到无序数组中最小的k个数 时间复杂度O(Nlogk) * 过程: * 1.一直维护一个有k个数的大根堆,这个堆代表目前选出来的k个最小的数 * 在堆里的k个元素中堆顶的元素是最小的k个数 ...

  4. 2 - Annotations标注

    下面是TestNG标注和参数的一个快速预览 @BeforeSuite 被标注的方法会在这个套件的所有测试执行之前执行  @AfterSuite 被标注的方法会在这个套件的所有测试执行之后执行 @Bef ...

  5. bootstrap学习--模态弹出框modals轮子

    1.点击按钮型 <link rel="stylesheet" href="lib/bootstrap/css/bootstrap.min.css"> ...

  6. wdcp-apache开启KeepAlive提高响应速度

    因为我们的网站,媒体文件,js文件,css文件等都在同一个服务器上,并且,我们网站有非常多的图片,所以当建立好tcp链接之后,不应该马上关闭连接,因为每建立一次连接还要进行dns解析,以及启动一个ht ...

  7. TatukGIS-TGIS_Editor.CreateShape

    procedure CreateShape(const _layer: TObject; const _ptg: TGIS_Point3D; const _type: TGIS_ShapeType; ...

  8. Zookeeper的设计模式之观察者模式(十)

    Watcher是Zookeeper用来实现distribute lock, distribute configure, distribute queue等应用的主要手段.要监控data_tree上的任 ...

  9. Explain语法

    EXPLAIN SELECT -- 变体: 1. EXPLAIN EXTENDED SELECT -- 将执行计划"反编译"成SELECT语句,运行SHOW WARNINGS 可得 ...

  10. 如何把iOS代码编译为Android应用

    新闻 <iPhone 6/6 Plus中国销量曝光:单月销量650万>:据iSuppli Corp.中国研究总监王阳爆料,iPhone 6和iPhone 6 Plus在国内受欢迎的情况大大 ...