归并排序(Merge Sort)是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。归并排序有两种方式:1): 自底向上的方法 2):自顶向下的方法

1、 自底向上的方法
(1) 自底向上的基本思想
     自底向上的基本思想是:第1趟归并排序时,将待排序的文件R[1..n]看作是n个长度为1的有序子文件,将这些子文件两两归并,若n为偶数,则得到n/2个长度为2的有序子文件;若n为奇数,则最后一个子文件轮空(不参与归并)。故本趟归并完成后,前n/2 - 1个有序子文件长度为2,但最后一个子文件长度仍为1;第2趟归并则是将第1趟归并所得到的n/2个有序的子文件两两归并,如此反复,直到最后得到一个长度为n的有序文件为止。
     上述的每次归并操作,均是将两个有序的子文件合并成一个有序的子文件,故称其为"二路归并排序"。类似地有k(k>2)路归并排序。

2、自顶向下的方法(本文主要介绍此种方法,下面的文字都是对此种方法的解读)

(1) 自顶向下的基本思想
     采用分治法进行自顶向下的算法设计,形式更为简洁。
     自顶向下的归并排序:是利用递归和分而治之的技术将数据序列划分成为越来越小的半子表,再对半子表排序,最后再用递归步骤将排好序的半子表合并成为越来越大的有序序列,归并排序包括两个步骤,分别为:

1)划分子表

2)合并半子表

(1)分治法的三个步骤
     设归并排序的当前区间是R[low..high],分治法的三个步骤是:
①分解:将当前区间一分为二,即求分裂点
②求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
③组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
  递归的终结条件:子区间长度为1(一个记录自然有序)。

如下演示递归的整个过程:

递归便是深度遍历(如下由左至右进行遍历):假设有这样的一列数组{9,8,7,6,5,4,3,2,1}进行划分的顺序如下:

{9,8,7,6,5,4,3,2,1} --> {9,8,7,6,5},{4,3,2,1}

{9,8,7,6,5} --> {9,8,7},{6,5}

{9,8,7} --> {9,8},{7}

{9,8} --> {9},{8}

{6,5} -->{6},{5}

{4,3,2,1} --> {4,3},{2,1}

{4,3} -->{4},{3}

{2,1} -->{2},{1}

当深度划分到左右数组都只剩1个元素的时候,进行上述逆序的合并:

{9},{8} --> {8,9} 然后和 {7} --> {7,8,9}

{6},{5} --> {5,6}    然后 {7,8,9}和{5,6} --> {5,6,7,8,9}

{2},{1} --> {1,2}

{4},{3} --> {3,4}   然后 {1,2}和 {3,4} --> {1,2,3,4}

最终{5,6,7,8,9}和{1,2,3,4} --> {1,2,3,4,5,6,7,8,9}

 

具体实现代码如下所示:

        //归并排序(目标数组,子表的起始位置,子表的终止位置)
private static void MergeSortFunction(int[] array, int first, int last)
{
try
{
if (first < last) //子表的长度大于1,则进入下面的递归处理
{
int mid = (first + last) / ; //子表划分的位置
MergeSortFunction(array, first, mid); //对划分出来的左侧子表进行递归划分
MergeSortFunction(array, mid + , last); //对划分出来的右侧子表进行递归划分
MergeSortCore(array, first, mid, last); //对左右子表进行有序的整合(归并排序的核心部分)
}
}
catch (Exception ex)
{ }
} //归并排序的核心部分:将两个有序的左右子表(以mid区分),合并成一个有序的表
private static void MergeSortCore(int[] array, int first, int mid, int last)
{
try
{
int indexA = first; //左侧子表的起始位置
int indexB = mid + ; //右侧子表的起始位置
int[] temp = new int[last + ]; //声明数组(暂存左右子表的所有有序数列):长度等于左右子表的长度之和。
int tempIndex = ;
while (indexA <= mid && indexB <= last) //进行左右子表的遍历,如果其中有一个子表遍历完,则跳出循环
{
if (array[indexA] <= array[indexB]) //此时左子表的数 <= 右子表的数
{
temp[tempIndex++] = array[indexA++]; //将左子表的数放入暂存数组中,遍历左子表下标++
}
else//此时左子表的数 > 右子表的数
{
temp[tempIndex++] = array[indexB++]; //将右子表的数放入暂存数组中,遍历右子表下标++
}
}
//有一侧子表遍历完后,跳出循环,将另外一侧子表剩下的数一次放入暂存数组中(有序)
while (indexA <= mid)
{
temp[tempIndex++] = array[indexA++];
}
while (indexB <= last)
{
temp[tempIndex++] = array[indexB++];
} //将暂存数组中有序的数列写入目标数组的制定位置,使进行归并的数组段有序
tempIndex = ;
for (int i = first; i <= last; i++)
{
array[i] = temp[tempIndex++];
}
}
catch (Exception ex)
{ }
}

对于N个元素的数组来说, 如此划分需要的层数是以2为底N的对数, 每一层中, 每一个元素都要复制到结果数组中, 并复制回来, 所以复制2N次, 那么对于归并排序,它的时间复杂度为O(N*logN), 而比较次数会少得多, 最少需要N/2次,最多为N-1次, 所以平均比较次数在两者之间. 它的主要问题还是在于在内存中需要双倍的空间.

归并排序算法(C#实现)的更多相关文章

  1. 归并排序算法 java 实现

    归并排序算法 java 实现 可视化对比十多种排序算法(C#版) [直观学习排序算法] 视觉直观感受若干常用排序算法 算法概念 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Di ...

  2. 必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解

    一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并 ...

  3. python实现折半查找算法&&归并排序算法

    今天依旧是学算法,前几天在搞bbs项目,界面也很丑,评论功能好像也有BUG.现在不搞了,得学下算法和数据结构,笔试过不了,连面试的机会都没有…… 今天学了折半查找算法,折半查找是蛮简单的,但是归并排序 ...

  4. 【java排序】 归并排序算法、堆排序算法

    一.归并排序算法 基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并 ...

  5. java实现归并排序算法

    归并排序算法思想:分而治之(divide - conquer);每个递归过程涉及三个步骤第一, 分解: 把待排序的 n 个元素的序列分解成两个子序列, 每个子序列包括 n/2 个元素.第二, 治理: ...

  6. #AcWing系列课程Level-2笔记——2. 归并排序算法

    归并排序算法 编写归并排序,记住下面的思路,代码也就游刃有余了! 1.首先确定数组的中间位置的分界点(下标),也就是mid=(left+right)>>1,分成left,right两段. ...

  7. PG归并排序算法详解

    前言 归并排序算法是连接算法中比较复杂的算法,相比嵌套循环与Hash匹配而言.本节会通过实例来说明该算法在PG中的具体实现. 在PG中,通过状态机来实现--归并-连接.当然这里的完整流程是排序--归并 ...

  8. 二路归并排序算法实现-完整C语言程序

    /*********************************************************************************************** 1.设 ...

  9. 《算法导论》读书笔记之排序算法—Merge Sort 归并排序算法

    自从打ACM以来也算是用归并排序了好久,现在就写一篇博客来介绍一下这个算法吧 :) 图片来自维基百科,显示了完整的归并排序过程.例如数组{38, 27, 43, 3, 9, 82, 10}. 在算法导 ...

随机推荐

  1. Unity3d Realtime Dynamic Volume Clouds Rendering

    Ray Marching体积渲染+perlin noise 动态效果: 博主近期渲染: 2016的渲染 2015后半段的渲染 ---- by wolf96

  2. 关于 unity5.3.1 录制 animation 带有 rotation 信息打包 Android 会运动错乱的问题

         Unity5.3.1 录制 animation 带有 rotation 信息打包 Android 会运动错乱的问题 ,临时解决方法是:在动画面板中点击 rotation 属性,右键选择菜单中 ...

  3. 2015年10月22日CSS学习笔记

    XHTML1.0对HTML4.0的改进 借鉴了XML的写法,语法更加严格. 把页面的内容和样式分离了,废弃了html4中的表示样式的标签和属性.推荐使用css来描述页面的样式. CSS样式的优先级 ! ...

  4. 【HTML】Advanced2:Conditional Comments

    1.try and figure out what is sensible for you to support. Are your web site visitors likely to be us ...

  5. oracle rac 学习(转载)

    一. RAC 并发 RAC 的本质是一个数据库,运行在多台计算机上的数据库,它的主要任务是数据库就是事务处理,它通过 Distributed Lock Management(DLM:分布式锁管理器)  ...

  6. 【转载】HBase 数据库检索性能优化策略

    转自:http://www.ibm.com/developerworks/cn/java/j-lo-HBase/index.html 高性能 HBase 数据库 本文首先介绍了 HBase 数据库基本 ...

  7. HDOJ-ACM1061(JAVA) Rightmost Digit

    题意:求n的n次方的个位数(1<=N<=1,000,000,000) 第一个最愚蠢的办法就是暴力破解,没什么意义,当然,还是实现来玩玩. 以下是JAVA暴力破解: import java. ...

  8. spring boot配置写法

    转自:http://blog.csdn.net/mickjoust/article/details/51646658 每日金句 你要搞清楚自己人生的剧本:不是你父母的续集,不是你子女的前传,更不是你朋 ...

  9. opencl 在vs2015上遇见的问题

    严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C4996 'clCreateCommandQueue': 被声明为已否决 Project2 d:... 解决方法:#pragma warnin ...

  10. Java正则表达式:Pattern类和Matcher类

    一.捕获组的概念 捕获组可以通过从左到右计算其开括号来编号,编号是从1 开始的.例如,在表达式 ((A)(B(C)))中,存在四个这样的组: 1     ((A)(B(C))) 2     (A) 3 ...