题目分析

首先,对于这道题,可以用贪心以一个\(O(n)\)的复杂度求解一个\(k\)的值

暴力是\(O(n^2)\)的复杂度,当然过不了。

我们手推一下样例,会发现,答案满足单调性,于是,果断想到二分。

再推一推性质,会发现,实际上,一个答案最多会出现\(\sqrt n\)次,于是,可以对答案分块,用二分枚举右边界,时间复杂度\(O(n\sqrt nlog(n))\),还是过不了。

但因为每一次一个答案最多会出现\(\sqrt n\)次,这就是块的最大长度。

于是,对于\(k\le\sqrt n\)的部分,可以暴力,最后,卡卡常就过了。

对于每一个数,可以记录出现的最大块,看是否在当前块出现,这样就避免了在算 \(k\)时多出一个清空数组的时间复杂度

#include<bits/stdc++.h>
using namespace std;
int n;
int a[100005];
int tot[100005];
int size;
int check(int mid)
{
int now=1;
int cout=0;
for(int i=1;i<=n;i++)
{
if(tot[a[i]]!=now)
{
cout++;
tot[a[i]]=now;
}
if(cout>mid)
{
cout=1;
now++;
tot[a[i]]=now;
}
}
return now;
}
int main()
{
scanf("%d",&n);
size=sqrt(n*log2(n));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=1;i<=size;i++)
{
int now=1;
int cout=0;
memset(tot,0,sizeof(tot));
for(int j=1;j<=n;j++)
{
if(tot[a[j]]!=now)
{
cout++;
tot[a[j]]=now;
}
if(cout>i)
{
cout=1;
now++;
tot[a[j]]=now;
}
} printf("%d ",now);
}
int l=size+1;
int r;
while(l<=n)
{
int now=1;
int cout=0;
memset(tot,0,sizeof(tot));
for(int i=1;i<=n;i++)
{
if(tot[a[i]]!=now)
{
cout++;
tot[a[i]]=now;
}
if(cout>l)
{
cout=1;
now++;
tot[a[i]]=now;
}
}
int L=l;
int R=n;
while(L<=R)
{
int mid=(L+R)>>1;
memset(tot,0,sizeof(tot));
int tc=check(mid);
if(tc>=now)
{
L=mid+1;
r=mid;
}
else
{
R=mid-1;
}
}
for(int i=l;i<=r;i++)
{
printf("%d ",now);
}
l=r+1;
}
}

CF786C Till I Collapse的更多相关文章

  1. CF786C Till I Collapse 整体二分+根号分治

    题意:对于一个序列,假如说一个区间内最多能包含 $k$ 个不同的数,那么这个序列最少会被划分成几个区间 $?$ 输出 $k$ 为 $1\sim n$ 的答案. 我们每次选区间一定是贪心地将这个区间选地 ...

  2. Codeforces 786 C. Till I Collapse

    题目链接:http://codeforces.com/contest/786/problem/C 大力膜了一发杜教的代码感觉十分的兹瓷啊! 我们知道如果$k$是给定的我们显然是可以直接一遍$O(n)$ ...

  3. Codeforces 786C Till I Collapse

    题意: 给出一个长度为n的序列,每个数值在1-n之间且为整数,现在要把这个序列划分为若干段,使得每一段的颜色种数不超过k,求最少的区间数目.对于从1到n的n种k的取值,分别输出这时的最少区间数目. 分 ...

  4. Codeforces 786C Till I Collapse(树状数组+扫描线+倍增)

    [题目链接] http://codeforces.com/contest/786/problem/C [题目大意] 给出一个数列,问对于不同的k,将区间划分为几个, 每个区间出现不同元素个数不超过k时 ...

  5. Codeforces 786C. Till I Collapse 主席树

    题目大意: 给定一个长度为\(n\)的序列,要求将其划分为最少的若干段使得每段中不同的数字的种数不超过\(k\). 对于 \(k = 1 .. n\)输出所有的答案. \(n \leq 10^5\) ...

  6. Till I Collapse CodeForces - 786C (主席树区间加,二分最小值)

    大意: 给定序列, 将序列划分为若干段, 使得每段不同数字不超过k, 分别求出k=1...n时的答案. 考虑贪心, 对于某个k 从1开始, 每次查询最后一个颜色数<=k的点作为一个划分, 直到全 ...

  7. [cf787E]Till I Collapse

    考虑对询问分块,对于i<K的询问,暴力处理,时间复杂度为o(Kn):对于i>K的询问,发现答案都小于n/K且满足单调性,那么可以二分出每一段相同的答案,时间复杂度为$o(n^{2}log_ ...

  8. [zt]给你的Mp4大换血,精选Touch里3年收集的900多首歌,"经典不忍去的""最新近流行的",与你共享~~

    如果你是音乐爱好者: 这些歌, 请戴上耳机, 调大音量, 一个人听 ,全世界 都是你的!!!!! (一)这些歌很温暖,没有金属味,适合有阳光的午后,很悠闲... [Anaesthesia]Maximi ...

  9. Codeforces Round #406 (Div. 1)

    B题打错调了半天,C题想出来来不及打,还好没有挂题 AC:AB Rank:96 Rating:2125+66->2191 A.Berzerk 题目大意:有一个东东在长度为n的环上(环上点编号0~ ...

随机推荐

  1. js将数字转为千分位/清除千分位

    /** * 千分位格式化数字 * * @param s * 传入需要转换的数字 * @returns {String} */ function formatNumber(s) { if (!isNaN ...

  2. 【Linux】【专项突破】Linux重定向与管道

    [专项突破]Linux重定向与管道 This article is written by Xrilang(Chinese Name:萌狼蓝天) If you want find me ,You can ...

  3. 拉丁超立方体初始化种群(附Matlab代码)

    拉丁超立方体初始化种群 1.引言 群智能算法一般以随机方式产生初始化种群的位置,但是这种方式可能导致种群内个体分布不均匀.拉丁超立方体抽样方法产生的初始种群位置,可以保证全空间填充和抽样非重叠,从而使 ...

  4. Arcpy按属性(字段值)不同将shp分割为多个独立shp_适用点线面矢量

    利用代码可以进行批量处理,安装有10.5及以上版本ArcGIS可以使用工具Split by attributes完成上述任务 # -*- coding: utf-8 -*- # Import syst ...

  5. PowerDotNet平台化软件架构设计与实现系列(08):缓存平台

    几乎所有后端应用都会或多或少用到缓存,尤其是分布式缓存服务,以及和本地缓存构造的二级缓存.根据我们一贯的节约代码的风格,为了复用的目标,抽象出缓存平台,进行缓存管理. 考虑到很多公司都会自己造或者直接 ...

  6. CF53C Little Frog 题解

    Content 有一只小青蛙想游历 \(n\) 块土堆,它现在在 \(1\) 号土堆上,每次可以跳跃任意距离到达另外的一个土堆.它想让每次跳跃的距离都不相等,试找到这样的一个方案. 数据范围:\(1\ ...

  7. mpstat 查看多核CPU负载状态

    mpstat是Multiprocessor Statistics的缩写,是实时系统监控工具.其报告与CPU的一些统计信息,这些信息存放在/proc/stat文件中.在多CPUs系统里,其不但能查看所有 ...

  8. video标签实现多个视频循环播放

    <head> <!-- If you'd like to support IE8 (for Video.js versions prior to v7) --> </he ...

  9. Spring Boot新增一个YML配置文件,并进行加载

    我们在同级目录下增加 然后增加一个配置类 SpringBootConfiguration.java import org.springframework.beans.factory.config.Ya ...

  10. MFC之实现无边窗口移动

    说明 演示环境: Vs2015 + MFC 基于对话框程序 效果图 方法1 注意: 此方法存在缺陷: 无法响应LButtonUp消息 添加消息处理函数 函数代码 void CMFCApplicatio ...