正题

题目链接:https://darkbzoj.tk/problem/3729


题目大意

给出\(n\)个点的一棵树,第\(i\)个节点上有\(a_i\)个石子,然后每次可以选择不超过\(L\)个石子移动到父节点处。要求支持操作

  • 以一个节点的子树进行博弈是否有先手必胜
  • 修改一个节点的石子个数
  • 插入一个新的叶子

\(1\leq n,m\leq 5\times 10^4,1\leq L\leq 10^9\)


解题思路

额,首先是阶梯博弈和巴什博弈的缝合怪

巴什博弈结论是石头直接模上一个\(L+1\),然后阶梯博弈要分奇偶深度

然后不带插入的话就是维护\(dfs\)序区间的奇数深度和偶数深度的异或和就好了,但是要插入所以要一次改一堆\(dfs\)序,所以要用\(Splay\)维护就好了。

时间复杂度\(O(m\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
struct node{
int to,next;
}a[N<<1];
int n,m,L,tot,ls[N],dep[N],v[2][N];
int t[N][2],fa[N],w[2][N],d[N],last;
bool Direct(int x)
{return t[fa[x]][1]==x;}
void PushUp(int x){
if(!x)return;
w[0][x]=v[0][x]^w[0][t[x][0]]^w[0][t[x][1]];
w[1][x]=v[1][x]^w[1][t[x][0]]^w[1][t[x][1]];
d[x]=min(dep[x],min(d[t[x][0]],d[t[x][1]]));
return;
}
void Rotate(int x){
int y=fa[x],z=fa[y];
int xs=Direct(x),ys=Direct(y);
int w=t[x][xs^1];
t[x][xs^1]=y;t[y][xs]=w;
if(z)t[z][ys]=x;
if(w)fa[w]=y;fa[y]=x;fa[x]=z;
PushUp(y);PushUp(x);return;
}
void Splay(int x,int f){
while(fa[x]!=f){
int y=fa[x];
if(fa[y]==f)Rotate(x);
else if(Direct(x)==Direct(y))
Rotate(y),Rotate(x);
else Rotate(x),Rotate(x);
}
return;
}
int Find(int x,int k){
if(d[t[x][0]]<=k)Find(t[x][0],k);
if(dep[x]<=k)return x;
return Find(t[x][1],k);
}
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs(int x,int F){
t[last][1]=x;fa[x]=last;
last=x;dep[x]=dep[F]+1;
if(dep[x]&1)swap(v[0][x],v[1][x]);
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==F)continue;
dfs(y,x);
}
return;
}
void Downdata(int x)
{PushUp(x);if(fa[x])Downdata(fa[x]);return;}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&L);d[0]=n+1;
for(int i=1;i<=n;i++)scanf("%d",&v[0][i]),v[0][i]%=(L+1);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
last=N-1;d[N-1]=dep[N-1]=n+1;
dfs(1,0);t[last][1]=N-2;fa[N-2]=last;
last=N-2;d[N-2]=dep[N-2]=n+1;
Downdata(last);
int sum=0;
scanf("%d",&m);
for(int i=1;i<=m;i++){
int op,z,x,y;
scanf("%d",&op);
if(op==1){
scanf("%d",&x);x^=sum;
if(i==106)
i++,i--;
Splay(x,0);
if(d[t[x][1]]>dep[x]){
if(w[(dep[x]&1)^1][t[x][1]])
puts("MeiZ"),sum++;
else
puts("GTY");
}
else{
y=Find(t[x][1],dep[x]);
Splay(y,x);
if(w[(dep[x]&1)^1][t[y][0]])
puts("MeiZ"),sum++;
else
puts("GTY");
}
}
else if(op==2){
scanf("%d%d",&x,&y);
x^=sum;y^=sum;Splay(x,0);
v[dep[x]&1][x]=y%(L+1);PushUp(x);
}
else if(op==3){
scanf("%d%d%d",&x,&y,&z);
z^=sum;x^=sum;y^=sum;
dep[y]=dep[x]+1;v[dep[y]&1][y]=z%(L+1);
PushUp(y);Splay(x,0);
int k=t[x][1];while(t[k][0])k=t[k][0];
Splay(k,x);fa[y]=k;t[k][0]=y;
PushUp(k);PushUp(x);
}
}
return 0;
}

bzoj3729-Gty的游戏【Splay,博弈论】的更多相关文章

  1. [BZOJ3729]Gty的游戏

    [BZOJ3729]Gty的游戏 试题描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动 ...

  2. 【块状树】【博弈论】bzoj3729 Gty的游戏

    块状树,每个块的根记录一下当前块内距块根为奇数距离的异或和和偶数距离的异或和,询问的时候讨论一下即可. 总的节点数可能超过50000. #include<cstdio> #include& ...

  3. BZOJ3729: Gty的游戏(伪ETT)

    题面 传送门 前置芝士 巴什博奕 \(Nim\)游戏的改版,我们现在每次最多只能取走\(k\)个石子,那么\(SG\)函数很容易写出来 \[SG(x)=mex_{i=1}^{\min(x,k)}SG( ...

  4. BZOJ 3729 Gty的游戏 ——Splay

    很久很久之前,看到Treap,好深啊 很久之前看到Splay,这数据结构太神了. 之后学习了LCT. 然后看到Top-Tree就更觉得神奇了. 知道我见到了这题, 万物基于Splay 显然需要维护子树 ...

  5. BZOJ_3729_Gty的游戏_博弈论+splay+dfs序

    BZOJ_3729_Gty的游戏_博弈论+splay+dfs序 Description 某一天gty在与他的妹子玩游戏. 妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子 ...

  6. 【BZOJ 3729】3729: Gty的游戏 (Splay维护dfs序+博弈)

    未经博主同意不得转载 3729: Gty的游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 448  Solved: 150 Description ...

  7. 【BZOJ1022】小约翰的游戏(博弈论)

    [BZOJ1022]小约翰的游戏(博弈论) 题面 BZOJ 题解 \(Anti-SG\)游戏的模板题目. #include<iostream> #include<cstdio> ...

  8. 【BZOJ1188】分裂游戏(博弈论)

    [BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...

  9. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  10. 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)

    [BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...

随机推荐

  1. 教你IO流来便利电脑磁盘所有文件,把图片放到一个文件夹里(会发现什么不可告人的密码)

    一.需求 我要把C盘下面的所有图片都拿出来,放到一个新文件夹中.今天小编一身正气,看看有没有什么意外发现!!学会看看自己的盘,悄悄的哦!!! 二.代码展示(运行时间可能有点长) import java ...

  2. C#比较两个对象是否为同一个对象。 Visual Studio调试器指南---多线程应用程序调试(一)

    两个对象是否为同一个对象:是看两个对象是否指向堆中的同一块内存. 1.使用object.ReferenceEquals() class Program { static void Main(strin ...

  3. .Net Framwork /.Net Core 发布为NuGet包

    一.使用NuGet发布包 下载NuGet命令行工具: https://dist.nuget.org/win-x86-commandline/v5.8.0/nuget.exe 下载NuGet Packa ...

  4. C++ 中的User a, User b=a 和User a, User b, b=a的区别

    #include <iostream>using namespace std;class User{ public: int age; int number; User() { cout ...

  5. 使用TypeConverter类

    3.2.2 使用TypeConverter类将XAML标签的Attribute与对象的Property进行映射注意本小节的例子对于初学者来说理解起来比较困难而且实用性不大,主要是为喜欢刨根问底的WPF ...

  6. redis并发锁

    1.应对并发场景 避免操作数据不一致 将对redis加锁 2.考虑到异常状况无法释放锁,导致死锁 将代码块进行try-catch处理 3.考虑try时宕机依然导致死锁 对锁添加时效性,添加过期时间 4 ...

  7. 微信小程序从入门到实践(一)-设置底部导航栏

    微信小程序最多能加5个导航图标.因为我们只有两个默认页面,这里我们就添加两个导航图标 先看我们要达到的就是这么一个效果 接下来开始实践: (1)准备工作 找几个图标,将上述起好名字的图标 保存到 小程 ...

  8. 在python3.6环境下使用cxfreeze打包程序

    在python3.6环境下使用cxfreeze打包程序 环境:python3.6 打包程序:aliens_invasion 原本想使用pyintaller 进行打包,使用pip的安装过程也没有问题,打 ...

  9. JDK、JRE、JVM的基本介绍

    一 .Java三大版本 JavaSE 标准版(桌面程序.控制台开发-) JavaWE 嵌入式开发(手机.家电-) JavaEE 企业开发(web端.服务器开发-) 二.JDK.JRE.JVM区别 JD ...

  10. (四)羽夏看C语言——循环与跳转

    写在前面   由于此系列是本人一个字一个字码出来的,包括示例和实验截图.本人非计算机专业,可能对本教程涉及的事物没有了解的足够深入,如有错误,欢迎批评指正. 如有好的建议,欢迎反馈.码字不易,如果本篇 ...