正题

题目链接:https://darkbzoj.tk/problem/3729


题目大意

给出\(n\)个点的一棵树,第\(i\)个节点上有\(a_i\)个石子,然后每次可以选择不超过\(L\)个石子移动到父节点处。要求支持操作

  • 以一个节点的子树进行博弈是否有先手必胜
  • 修改一个节点的石子个数
  • 插入一个新的叶子

\(1\leq n,m\leq 5\times 10^4,1\leq L\leq 10^9\)


解题思路

额,首先是阶梯博弈和巴什博弈的缝合怪

巴什博弈结论是石头直接模上一个\(L+1\),然后阶梯博弈要分奇偶深度

然后不带插入的话就是维护\(dfs\)序区间的奇数深度和偶数深度的异或和就好了,但是要插入所以要一次改一堆\(dfs\)序,所以要用\(Splay\)维护就好了。

时间复杂度\(O(m\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
struct node{
int to,next;
}a[N<<1];
int n,m,L,tot,ls[N],dep[N],v[2][N];
int t[N][2],fa[N],w[2][N],d[N],last;
bool Direct(int x)
{return t[fa[x]][1]==x;}
void PushUp(int x){
if(!x)return;
w[0][x]=v[0][x]^w[0][t[x][0]]^w[0][t[x][1]];
w[1][x]=v[1][x]^w[1][t[x][0]]^w[1][t[x][1]];
d[x]=min(dep[x],min(d[t[x][0]],d[t[x][1]]));
return;
}
void Rotate(int x){
int y=fa[x],z=fa[y];
int xs=Direct(x),ys=Direct(y);
int w=t[x][xs^1];
t[x][xs^1]=y;t[y][xs]=w;
if(z)t[z][ys]=x;
if(w)fa[w]=y;fa[y]=x;fa[x]=z;
PushUp(y);PushUp(x);return;
}
void Splay(int x,int f){
while(fa[x]!=f){
int y=fa[x];
if(fa[y]==f)Rotate(x);
else if(Direct(x)==Direct(y))
Rotate(y),Rotate(x);
else Rotate(x),Rotate(x);
}
return;
}
int Find(int x,int k){
if(d[t[x][0]]<=k)Find(t[x][0],k);
if(dep[x]<=k)return x;
return Find(t[x][1],k);
}
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
void dfs(int x,int F){
t[last][1]=x;fa[x]=last;
last=x;dep[x]=dep[F]+1;
if(dep[x]&1)swap(v[0][x],v[1][x]);
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(y==F)continue;
dfs(y,x);
}
return;
}
void Downdata(int x)
{PushUp(x);if(fa[x])Downdata(fa[x]);return;}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&L);d[0]=n+1;
for(int i=1;i<=n;i++)scanf("%d",&v[0][i]),v[0][i]%=(L+1);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
addl(x,y);addl(y,x);
}
last=N-1;d[N-1]=dep[N-1]=n+1;
dfs(1,0);t[last][1]=N-2;fa[N-2]=last;
last=N-2;d[N-2]=dep[N-2]=n+1;
Downdata(last);
int sum=0;
scanf("%d",&m);
for(int i=1;i<=m;i++){
int op,z,x,y;
scanf("%d",&op);
if(op==1){
scanf("%d",&x);x^=sum;
if(i==106)
i++,i--;
Splay(x,0);
if(d[t[x][1]]>dep[x]){
if(w[(dep[x]&1)^1][t[x][1]])
puts("MeiZ"),sum++;
else
puts("GTY");
}
else{
y=Find(t[x][1],dep[x]);
Splay(y,x);
if(w[(dep[x]&1)^1][t[y][0]])
puts("MeiZ"),sum++;
else
puts("GTY");
}
}
else if(op==2){
scanf("%d%d",&x,&y);
x^=sum;y^=sum;Splay(x,0);
v[dep[x]&1][x]=y%(L+1);PushUp(x);
}
else if(op==3){
scanf("%d%d%d",&x,&y,&z);
z^=sum;x^=sum;y^=sum;
dep[y]=dep[x]+1;v[dep[y]&1][y]=z%(L+1);
PushUp(y);Splay(x,0);
int k=t[x][1];while(t[k][0])k=t[k][0];
Splay(k,x);fa[y]=k;t[k][0]=y;
PushUp(k);PushUp(x);
}
}
return 0;
}

bzoj3729-Gty的游戏【Splay,博弈论】的更多相关文章

  1. [BZOJ3729]Gty的游戏

    [BZOJ3729]Gty的游戏 试题描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动 ...

  2. 【块状树】【博弈论】bzoj3729 Gty的游戏

    块状树,每个块的根记录一下当前块内距块根为奇数距离的异或和和偶数距离的异或和,询问的时候讨论一下即可. 总的节点数可能超过50000. #include<cstdio> #include& ...

  3. BZOJ3729: Gty的游戏(伪ETT)

    题面 传送门 前置芝士 巴什博奕 \(Nim\)游戏的改版,我们现在每次最多只能取走\(k\)个石子,那么\(SG\)函数很容易写出来 \[SG(x)=mex_{i=1}^{\min(x,k)}SG( ...

  4. BZOJ 3729 Gty的游戏 ——Splay

    很久很久之前,看到Treap,好深啊 很久之前看到Splay,这数据结构太神了. 之后学习了LCT. 然后看到Top-Tree就更觉得神奇了. 知道我见到了这题, 万物基于Splay 显然需要维护子树 ...

  5. BZOJ_3729_Gty的游戏_博弈论+splay+dfs序

    BZOJ_3729_Gty的游戏_博弈论+splay+dfs序 Description 某一天gty在与他的妹子玩游戏. 妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子 ...

  6. 【BZOJ 3729】3729: Gty的游戏 (Splay维护dfs序+博弈)

    未经博主同意不得转载 3729: Gty的游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 448  Solved: 150 Description ...

  7. 【BZOJ1022】小约翰的游戏(博弈论)

    [BZOJ1022]小约翰的游戏(博弈论) 题面 BZOJ 题解 \(Anti-SG\)游戏的模板题目. #include<iostream> #include<cstdio> ...

  8. 【BZOJ1188】分裂游戏(博弈论)

    [BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...

  9. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  10. 【BZOJ1413】[ZJOI2009]取石子游戏(博弈论,动态规划)

    [BZOJ1413][ZJOI2009]取石子游戏(博弈论,动态规划) 题面 BZOJ 洛谷 题解 神仙题.jpg.\(ZJOI\)是真的神仙. 发现\(SG\)函数等东西完全找不到规律,无奈只能翻题 ...

随机推荐

  1. QT系列

    大话QT系列:http://blog.csdn.net/houqd2012/article/category/2128295 里面有提到CTK插件系统.

  2. wpf实现轮播效果

    在web上面轮播非常常见 WPF中似乎要自己搞,那么我依葫芦画瓢搞一个 如下,平时按一定的时间轮播,点击右下角的灰色圆点(不是很明显0.0),则切换到对应图片  先放 源码:https://gitee ...

  3. POI实现excel的导入导出

    引入依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi</arti ...

  4. 关于Ubuntu18.04 linux系统下使用Tim QQ 微信

    先配上张图 步骤: 1.1 :需要安装环境deepin-wine 1.1:(你把他理解为jdk就好,没有jdk无法运行java程序,同理没有deepin-wine环境无法运行腾讯产品) 1.2 :去哪 ...

  5. js之DOM入门(慕课网学习笔记)

    DOM简介 获得元素 document.getElementById('') 1.通过id获得元素内容 document.getElementsByTagName('') 2.通过标签获得元素内容 d ...

  6. Spring PropertyPlaceholderConfigurer 自定义扩展

    原文地址:https://blog.csdn.net/feiyu8607/article/details/8282893 Spring中PropertyPlaceholderConfigurer这个类 ...

  7. github push报LibreSSL SSL_connect错误

    最近发现在家里push代码到github的时候总是报错,报错内容如下: fatal: unable to access 'https://github.com/MangoDowner/clear-le ...

  8. MySQL基础——常用命令

    一.连接MySQL 1.启动mysql首先在打开cmd窗口,输入mysql -uroot -p ,然后空格进入MySQL控制台,MySQL的提示符是: mysql>. mysql -uroot ...

  9. linux centos7 定时执行服务监控脚本

    2021-08-25 1. 需求 在服务挂掉之后我们要怎么做才能保证服务在短时间内开启?可以编写脚本监控服务的状态,在服务挂掉后及时将其开启,并定时执行该脚本. 2. 脚本编写 思路:平常我们可以通过 ...

  10. 【曹工杂谈】Maven和Tomcat能有啥联系呢,都穿打补丁的衣服吗

    Maven和Tomcat能有啥联系呢,都穿打补丁的衣服吗 前奏 我们上篇文章,跟大家说了下,怎么调试maven插件的代码,注意,是插件的代码.插件,是要让主框架来执行的,主框架是谁呢,就是maven ...