AtCoder Beginner Contest 238 A - F 题解
AtCoder Beginner Contest 238
\(A - F\) 题解
A - Exponential or Quadratic
题意
判断 \(2^n > n^2\)是否成立?
Solution
当 \(n\) 为 2,3,4 的时候不成立,否则成立
Code
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main() {
int n; cin >> n;
bool flag = true;
if(n >= 2 && n <= 4) flag = false;
puts(flag ? "Yes" : "No");
return 0;
}
B - Pizza
题意
切披萨,先在 12:00 的位置(钟表的位置) 切一刀,然后按照给定的序列 \(A\) , 每次先顺时针旋转 \(A_i\) 度,然后在在 12:00 的位置切一刀,问最后的所有披萨块中圆心角最大的是多少度?
Solution
按照题意模拟,在原披萨中每个被切到的地方标记一下,求最大的区间长度即可
Code
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main() {
int n; cin >> n;
vector<bool> vis(361);
vis[0] = vis[360] = true; //初始化
int res = 0;
for(int i = 0; i < n; i ++ ) {
int x; cin >> x;
res += x;
vis[res % 360] = true;
}
int l = 0; //上一次被切到的位置
int ans = 0;
for(int i = 1; i <= 360; i ++ ) { //注意要枚举到 360°
if(!vis[i]) continue;
ans = max(ans, i - l);
l = i;
}
cout << ans << "\n";
return 0;
}
C - digitnum
题意
定义\(f(x)\) 是 和 \(x\) 的位数相同且小于等于 \(x\) 的正整数的个数
\(f(1) = 1, f(2) = 2, f(10) = 1 \ ...\)
给定一个 \(x\) , 求 \(f(1) \ + \ f(2) \ + \ f(3) \ + \ ... \ f(x)\) 的值 模 \(998244353\) 的值
Solution
注意到对于长度确定的数字的 \(f(n)\) 的值是 \(1 - x\) 的一个公差为\(1\) 的序列
因此我们可以枚举数字的长度, 分别计算即可
Code
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
constexpr int MOD = 998244353;
LL chk(int x) {
LL res = 1;
while(x -- ) res *= 10;
return res;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("1.txt", "r", stdin);
#endif
LL x; cin >> x;
LL ans = 0;
int len = to_string(x).size();
for(int i = 1; i <= len; i ++ ) {
LL r = min(chk(i) - 1, x); //右边界
LL l = chk(i - 1); //左边界
LL len = r - l + 1;//计算等差数列的长度
LL X = len + 1; //等差数列计算公式 len + (len + 1) / 2
if(len % 2 == 0) len /= 2; //这里为了避免溢出先除以 2
else X /= 2;
len %= MOD; //这里为了避免溢出先取模
X %= MOD;
LL res = len * X % MOD; //上面已经除以 2 了
ans = (ans + res) % MOD;
}
cout << ans << "\n";
return 0;
}
D - AND and SUM
题意
\(x \ \& \ y \ = \ a\) \(x \ + \ y \ = s\)
给定 \(a\) 和 \(s\) , 判断是否存在合法的 \(x\) 和 \(y\)
Solution
\(x + y = x \bigoplus y + (x \& y) * 2\) 异或是不进位加法, \(\&\) 是进位,因此要乘以 2
因此我们先判断 \(a * 2 \le s\) 是否成立
然后判断 \(s - 2 * a\) 二进制下的每一位,如果第 \(i\) 位是 1 的话,那么 a 的第 \(i\) 位就不可以是 1
Code
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
int main() {
int T; cin >> T;
while(T -- ) {
LL a, s; cin >> a >> s;
LL res1 = a * 2;
if(a * 2 > s) {
puts("No");
continue;
}
LL p = s - a * 2; // x ^ y
bool flag = true;
for(int i = 0; i < 64; i ++ ) {
if(p >> i & 1) {
if(a >> i & 1) {
flag = false;
break;
}
}
}
puts(flag ? "Yes" : "No");
}
return 0;
}
E - Range Sums
题意
给定一些区间的和,判断是否可以 在其中选择一些区间 可以通过这些区间的和算出 \(1-n\) 的区间和
Solution
One \(DFS\)
问题可以抽象成一个图论问题,给定的 \([l, r]\) 区间可以理解为 $l-1 $ 到 \(r\) 的一条无向边,判断从 \(0\) 是否可以到达 \(n\) 即可
Two \(DSU\)
对于给定的区间 \([l, r]\) 我们可以看成 点 \(l-1\) 和 点 \(r\) 是连通的,即可以互相到达的两个点,用并查集合并这两个点
判断最终 \(0\) 和 \(n\) 是否连通即可
Code
One
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 10;
vector<int> e[N];
bool st[N]; void dfs(int u) {
if(st[u]) return;
st[u] = true;
for(int &v: e[u]) {
dfs(v);
}
} int main() {
int n, q;
cin >> n >> q;
while(q -- ) {
int x, y; cin >> x >> y;
e[x - 1].push_back(y);
e[y].push_back(x - 1);
}
dfs(0);
puts(st[n] ? "Yes" : "No");
return 0;
}
Two
#include <bits/stdc++.h>
using namespace std;
constexpr int N = 2e5 + 10;
int main() {
int n, q;
cin >> n >> q;
vector<int> p(N);
iota(p.begin(), p.end(), 0);
function<int(int)> find = [&](int x) {
if(p[x] != x) p[x] = find(p[x]);
return p[x];
};
while(q -- ) {
int x, y; cin >> x >> y;
p[find(x - 1)] = find(y);
}
puts(find(0) == find(n) ? "Yes" : "No");
return 0;
}
F - Two Exams
题意
有两个关于城市的测试 \(P\) 和 \(Q\) ,二者的结果都是 \(1-n\) 的一个排列
现在我们要再 \(n\) 个城市中选择 \(k\) 个城市 并且满足一下条件
- 如果 \(X\) 被选择了 而且 \(Y\) 没有被选择, 那么 $P_X > P_Y $ 并且 \(Q_X > Q_Y\)
Solution
我们可以先把两个 测试分数 处理一下
定义一个 \(v\) 数组, \(v_i = j\) 代表 测试\(P\)分数为 \(i\) 的人 测试 \(Q\) 为 \(j\)
对于 \(v\) 数组我们可以进行一个 \(DP\)
\(Dp[i][j][k]\) 代表在 测试 \(P\) 分数区间为 \(1-i\) 的人中选择 \(j\) 个人, 并且在已选择的人中测试 \(Q\) 的分数最低为 \(k\)
那么我们可以进行一个 \(O(n^3)\) 的 \(DP\)
constexpr int MOD = 998244353;
dp[0][0][n] = 1;
for(int i = 1; i <= n; i ++) {
for(int j = 0; j <= k; j ++ ) {
for(int val = 1; val <= n; val ++ ) {
if(j < k && v[i] < val) { //如果可以选择这个城市
dp[i][j + 1][val] = (dp[i][j + 1][val] + dp[i - 1][j][k]) % MOD;
}
//如果不选这个城市 也是需要更新的
//如果这个城市不选,那么我们所选的合法方案中最小的值一定也比 val 大
dp[i][j][min(v[i], val)] = (dp[i][j][min(v[i], val)] + dp[i - 1][j][k]) % MOD; }
}
}
int ans = 0;
for(int &x: dp[n][k]) ans = (ans + x) % MOD;
cout << ans << "\n";
在实际写的过程中 \(dp\) 数组的第一维 可以用滚动数组优化
Code
#include <bits/stdc++.h>
#define rep(i, a, b) for(int i = (a); i <= (b); i ++ )
using namespace std;
typedef long long LL;
typedef pair<int, int> PII ;
template <typename T> void chkmax(T &x, T y) { x = max(x, y); }
template <typename T> void chkmin(T &x, T y) { x = min(x, y); }
constexpr int MOD = 998244353;
int main() {
int n, k;
cin >> n >> k;
vector<int> a(n), b(n);
for(int &x: a) cin >> x;
for(int &x: b) cin >> x;
vector<int> v(n);
rep(i, 0, n - 1) v[a[i] - 1] = b[i] - 1;
vector dp(k + 1, vector<int>(n + 1, 0));
dp[0][n] = 1;
rep(i, 0, n - 1) {
vector ndp(k + 1, vector<int>(n + 1, 0));
rep(x, 0, k) {
rep(y, 0, n) {
if(x < k && v[i] < y) { //如果可以选
ndp[x + 1][y] += dp[x][y];
ndp[x + 1][y] %= MOD;
}
ndp[x][min(y, v[i])] += dp[x][y];
ndp[x][min(y, v[i])] %= MOD;
}
}
dp.swap(ndp);
}
int res = 0;
for(int &x: dp[k]) {
res = (res + x) % MOD;
}
cout << res << "\n";
return 0;
}
AtCoder Beginner Contest 238 A - F 题解的更多相关文章
- AtCoder Beginner Contest 221 A~E题解
目录 A - Seismic magnitude scales B - typo C - Select Mul D - Online games E - LEQ 发挥比较好的一场,就来搓篇题解. F ...
- AtCoder Beginner Contest 131 Task F. Must Be Rectangular
Score: 600 points Approach 固定横坐标 $x$,考虑横坐标为 $x$ 的竖直线上最多可以有几个点. Observations 若最初两条竖直线 $x_1$.$x_2$ 上都有 ...
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 154 题解
人生第一场 AtCoder,纪念一下 话说年后的 AtCoder 比赛怎么这么少啊(大雾 AtCoder Beginner Contest 154 题解 A - Remaining Balls We ...
- AtCoder Beginner Contest 153 题解
目录 AtCoder Beginner Contest 153 题解 A - Serval vs Monster 题意 做法 程序 B - Common Raccoon vs Monster 题意 做 ...
- AtCoder Beginner Contest 177 题解
AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...
- KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解
KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...
- AtCoder Beginner Contest 184 题解
AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...
- AtCoder Beginner Contest 173 题解
AtCoder Beginner Contest 173 题解 目录 AtCoder Beginner Contest 173 题解 A - Payment B - Judge Status Summ ...
随机推荐
- Discrete Logging(poj2417)
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5120 Accepted: 2319 ...
- 深入理解Java虚拟机二:垃圾收集与内存分配
垃圾收集:垃圾收集要完成三件事,包括哪些内存需要回收,什么时候回收及如何回收. 1.需要回收的内存判定:没有引用指向原先分配给某个对象的内存时,则该内存是需要回收的垃圾 Java垃圾收集器在对内存进行 ...
- vue项目发布后,线上运行时刷新404
修改nginx配置文件 location / { root ... index ... try_files $uri $uri/ /index.html; ---解决页面刷新404问题 } (参考官网 ...
- iOS提交AppStore审核时:提示有其他支付并隐藏功能被拒的处理办法
背景提示:数字类产品(比如购买会员等不需要配送实物的商品),Apple规定必须使用苹果IAP应用内支付,给Apple分成30%.打包的时候不要勾选微信或支付宝等其他支付方式.如果你提交的包里包含了微信 ...
- element菜单刷新后定位问题?
之前这样写不行 <el-menu mode="vertical" theme="dark" ref="navbar" :default ...
- 基于Spring MVC + Spring + MyBatis的【银行账户信息管理系统】
资源下载:https://download.csdn.net/download/weixin_44893902/45604661 练习点设计: 模糊查询.删除.新增.修改 一.语言和环境 实现语言:J ...
- Android开发 ListView(垂直滚动列表项视图)的简单使用
效果图: 使用方法: 1.在布局文件中加入ListView控件: <?xml version="1.0" encoding="utf-8"?> &l ...
- windows 找不到文件gpedit.msc
前言: 最新在装一个软件的时候,需要更改本地组的一些内容,win+R输入gpedit.msc,提示找不到文件. 解决: 第一种方法:笔者电脑是window10 家庭版,试了网上新建一个txt文件,写入 ...
- 图片上传,直接在网页中显示(支持IE,谷歌,火狐浏览器)
<!doctype html><html lang="en"> <head> <meta charset="UTF-8" ...
- 上传自己的pip模块
对于模块开发者本质上需要做3件事: 编写模块 将模块进行打包 上传到PyPI(需要先注册PyPI账号) 注册PyPI账号 安装上传工具 基于工具进行上传 对于模块的使用者来说,只需要做2件事: 通过p ...