NOIP 模拟 $26\; \rm 神炎皇$
题解 \(by\;zj\varphi\)
一道 \(\varphi()\) 的题。
对于一个合法的数对,设它为 \((a*m,b*m)\) 则 \(((a+b)*m)|a*b*m^2\),所以 \((a+b)|a*b\),因为 \(\gcd(a,b)=1\),所以 \(a+b|m\)
那么设 \(a+b=k\),且 \(k*m\le n\),那么 \(k\) 最大为 \(\sqrt n\),所以枚举 \(k\) 即可,对于每个 \(k\),有 \(\rm \frac{n}{k^2}\) 个 \(m\) ,同时又有 \(\rm \varphi(k)\) 对 \(a+b\)
Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar('\n');
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar('\n');
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e7+7;
int vis[N],phi[N],prim[N],nm[N],cnt,sn;
ll n,ans;
inline void Getphi(int n) {
for (ri i(2);i<=n;p(i)) {
if (!vis[i]) phi[i]=i-1,vis[prim[p(cnt)]=i]=i;
for (ri j(1);j<=cnt&&prim[j]*i<=n;p(j)) {
int nw=i*prim[j];
vis[nw]=prim[j];
if (vis[i]==prim[j]) {
phi[nw]=phi[i]*prim[j];
break;
}
else phi[nw]=phi[i]*(prim[j]-1);
}
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nf.out","w",stdout);
read(n);
sn=sqrt(n);
Getphi(sn);
for (ri i(2);i<=sn;p(i)) ans+=(ll)phi[i]*(n/i/i);
print(ans);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $26\; \rm 神炎皇$的更多相关文章
- NOIP模拟26「神炎皇·降雷皇·幻魔皇」
T1:神炎皇 又是数学题,气死,根本不会. 首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...
- NOIP 模拟 $26\; \rm 降雷皇$
题解 \(by\;zj\varphi\) 用树状数组优化一下求最长上升子序列即可. 至于第二问,在求出答案后开 \(n\) 棵线段树,每颗维护当前最长上升子序列长度的方案数. Code #includ ...
- 【NOIP2017提高组模拟12.10】神炎皇
题目 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 分析 设\(gcd(a,b)= ...
- 【JZOJ4919】【NOIP2017提高组模拟12.10】神炎皇
题目描述 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 数据范围 对于100%的数 ...
- NOIP 模拟 $26\; \rm 幻魔皇$
题解 \(by\;zj\varphi\) 观察可发现一个点向它的子树走能到的白点,黑点数是一个斐波那契数列. 对于白色点对,可以分成两种情况: 两个白点的 \(lca\) 是其中一个白点 两个白点的 ...
- 「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数 ...
- noip模拟26[肾炎黄·酱累黄·换莫黄]
\(noip模拟26\;solutions\) 这个题我做的确实是得心应手,为啥呢,因为前两次考试太难了 T1非常的简单,只不过我忘记了一个定理, T2就是一个小小的线段树,虽然吧我曾经说过我再也不写 ...
- [考试总结]noip模拟26
首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...
- 2021.7.28考试总结[NOIP模拟26]
罕见的又改完了. T1 神炎皇 吸取昨天三个出规律的教训,开场打完T2 20pts直接大力打表1h. 但怎么说呢,我不懂欧拉函数.(其实exgcd都忘了 于是只看出最大平方因子,不得不线性筛,爆拿60 ...
随机推荐
- js定时器中引用的外部函数如何传递参数
问题:比如在一个点击事件中我需要将点击事件参数event传入到定时器中,如果只是单纯的在setTimeout(timer(e),1000)中写上括弧e,则该定时器不会等到1s才执行,而是会立即执行.那 ...
- Socket 编程介绍
Socket 编程发展 Linux Socket 编程领域,为了处理大量连接请求场景,需要使用非阻塞 I/O 和复用.select.poll 和 epoll 是 Linux API 提供的 I/O 复 ...
- C语言内存:大端小端及判别方式
大端和小端是指数据在内存中的存储模式,它由 CPU 决定:1) 大端模式(Big-endian)是指将数据的低位(比如 1234 中的 34 就是低位)放在内存的高地址上,而数据的高位(比如 1234 ...
- 关于高校表白App的NABCD项目分析
N(Need,需求) 首先,针对本校男多女少 的具体情况,为广大本校大学生提供一个更加宽广的平台: 其次,针对当前各高校均有校园表白墙的实际情况,各表白墙难以整合在一起,使得信息不够集中的现状,我们小 ...
- ESP8266 NodeMCU小白手把手入门(实操篇)以土壤湿度和DHT传感器为例讲解读取传感器的值
物联网使得现实世界中的实体和数字世界比以往任何时候都更紧密地联系在一起.NodeMCU作为其中的一个重要设备,作用之一就是与传感器相连以实现万物互联通讯.这篇关于NodeMCU的实操篇以土壤湿度传感器 ...
- [源码解析] 深度学习分布式训练框架 horovod (17) --- 弹性训练之容错
[源码解析] 深度学习分布式训练框架 horovod (17) --- 弹性训练之容错 目录 [源码解析] 深度学习分布式训练框架 horovod (17) --- 弹性训练之容错 0x00 摘要 0 ...
- React事件绑定的方式
一.是什么 在react应用中,事件名都是用小驼峰格式进行书写,例如onclick要改写成onClick 最简单的事件绑定如下: class ShowAlert extends React.Compo ...
- CH1809 匹配统计 题解
看了好久才懂,我好菜啊-- 题意:给两个字符串 \(a\) 与 \(b\),对于 \(q\) 次询问,每次询问给出一个 \(x\),求存在多少个位置使得 \(a\) 从该位置开始的后缀子串与 \(b\ ...
- odoo14学习----x2many操作与图片设置继承image.mixin
三种方式实现数据更新 一,如上所述 二,通过对数据集调用update({'key':value,'key1':value1..})更新数据集 三,调用write函数,与update类似,传递字典. ...
- python读取数据写入excel
'''写入excel文件''' import xlsxwriter # todo 创建excel文件 xl = xlsxwriter.Workbook(r'D:\testfile\test.xlsx' ...