目录

Huang J., Smola A., Gretton A., Borgwardt K. & Scholkopf B. Correcting Sample Selection Bias by Unlabeled Data. NIPS, 2007.

MMD量化了两组数据是否来自同一个分布的可能性, 那么如何利用这份信息来更好地训练, 增加模型的泛化性呢?

主要内容

我们有两组数据\(Z = ((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)) \subseteq \mathcal{X} \times \mathcal{Y}\), \(Z' = ((x_1', y_1'), (x_2', y_2'), \ldots, (x_n', y_n')) \subseteq \mathcal{X} \times \mathcal{Y}\), 分别来自分布\(\mathrm{Pr}(x, y)\)和\(\mathrm{Pr}'(x, y)\).

一般来说, 我们训练一个模型(分类也好回归也罢), 可以归结为如下的风险函数

\[R(\mathrm{Pr}, \theta, \ell(x, y, \theta)) = \mathbb{E}_{(x, y) \sim \mathrm{Pr}} [\ell(x, y, \theta)],
\]

但是我们真正想要优化的是\(R(\mathrm{Pr}', \theta, \ell(x, y, \theta))\), 当然一般的做法是假设二者是一致的. 但实际情况可能是二者并不一致, 但是注意到

\[R[\mathrm{Pr}', \theta, \ell(x, y, \theta)] = \mathbb{E}_{(x, y) \in \mathrm{Pr'}} [\ell(x, y, \theta)]=\mathbb{E}_{(x, y) \sim \mathrm{Pr}} [\frac{\mathrm{Pr}'(x, y)}{\mathrm{Pr}(x, y)} \ell(x, y, \theta)],
\]

并记\(\beta(x, y) := \frac{\mathrm{Pr}'(x, y)}{\mathrm{Pr}(x, y)}\)(若成立), 则

\[R[\mathrm{Pr}', \theta, \ell(x, y, \theta)] = R[\mathrm{Pr}, \theta, \beta(x, y)\ell(x, y, \theta)].
\]

这实际上可以理解为对样本的一个重加权, 所以现在的问题便是, 如何估计\(\beta(x, y)\), 本文研究一种特殊的情况:

\[\mathrm{Pr}(x, y) = \mathrm{P}(y|x) \mathrm{Pr}(x) , \quad \mathrm{Pr}'(x, y) = \mathrm{P}(y|x) \mathrm{Pr}'(x),
\]

即 covariate shift, 此时

\[\beta(x, y) = \frac{\mathrm{Pr}(x)}{\mathrm{Pr}'(x)}.
\]

首先, 根据MMD我们知道, 两个分布差异性可以量化为

\[\mathrm{MMD}[\mathcal{F},p,q] := \sup_{f \in \mathcal{F}} (\mathbb{E}_p [f(x)] - \mathbb{E}_q[f(y)]),
\]

当我们限制\(\mathcal{F}\)为 universal RKHS \(\mathcal{H}\)的时候, 上式可表示为

\[\mathrm{MMD}[\mathcal{H}, p, q] = \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_p [f(x)] - \mathbb{E}_q [f(x)]
= \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_p [\langle \phi_x, f\rangle_{\mathcal{H}}] - \mathbb{E}_q [\langle \phi_x, f\rangle_{\mathcal{H}}] = \|\mu_p-\mu_q\|_{\mathcal{H}}.
\]

在此处, 我们关注(用\(\phi(x)\)表示\(\phi_x\))

\[\|\mu(\mathrm{Pr}') - \mathbb{E}_{x \sim \mathrm{Pr}(x)} [\beta(x) \phi(x)]\|,
\]

即我们希望找到一个权重\(\beta(x)\)使得上式最小, 由于分布的一些特殊性质, 完整的问题表述如下:

\[\min_{\beta} \quad \|\mu(\mathrm{Pr}') - \mathbb{E}_{x \sim \mathrm{Pr}(x)} [\beta(x) \phi(x)]\| \\
\mathrm{s.t.}\quad \beta(x) \ge 0, \mathbb{E}_{x \sim \mathrm{Pr}(x)}[\beta(x)] = 1.
\]

在实际问题中, 我们只有分布中的有限的采样, 也就是开头的\(Z, Z'\), 上述问题变为

\[\|\frac{1}{m} \sum_{i=1}^m \beta_i \phi(x_i)- \frac{1}{n} \sum_{i=1}^n \phi(x_i')\|^2 = \frac{1}{m^2}\beta^T K \beta - \frac{2}{mn}\kappa^T \beta + \mathrm{const},
\]

其中\(\kappa_i := \sum_{j=1}^{n} k(x_i, x_j')\). 于是, 我们优化如下的问题

\[\min_{\beta} \quad \frac{1}{2} \beta^T K \beta - \frac{m}{n}\kappa^T\beta \\
\mathrm{s.t.} \quad \beta_i \in [0, B], |\sum_{i=1}^m \beta_i - m| \le m\epsilon.
\]

限制条件的前者限制了差异的大小, 后者则是希望其迫近概率分布.

KMM的更多相关文章

  1. Kotlin/Native KMM项目架构

    一.什么是KMM? Kotlin Multiplatform Mobile ( KMM ) 是一个 SDK,旨在简化跨平台移动应用程序的创建.在 KMM 的帮助下,您可以在 iOS 和 Android ...

  2. Kotlin/Native 用KMM写Flutter插件

    一.用KMM写Flutter插件 Google官方有一个写Flutter例子How to write a Flutter plugin,这里把Google plugin_codelab 例子改成用KM ...

  3. UI数据库

    一.数据库 SQL: SQL是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集, 是一种功能齐全的数据库语言. 二.数据库管理系统 数据 ...

  4. 采用ubuntu系统来安装tensorflow

    最近在学习google新开源的深度学习框架tensorflow.发现安装它的时候,需要依赖python2.7.X;我之前一直使用的linux是centos.而centos不更新了,里面的自带的pyth ...

  5. OAF_开发系列07_实现OAF下拉菜单的上下联动Poplist Synchor(案例)

    20150706 Created By BaoXinjian

  6. SQLServer : EXEC和sp_executesql的区别

    MSSQL为我们提供了两种动态执行SQL语句的命令,分别是EXEC和sp_executesql.通常,sp_executesql则更具有优势,它提供了输入输出接口,而EXEC没有.还有一个最大的好处就 ...

  7. 01Spring_基本jia包的导入andSpring的整体架构and怎么加入日志功能

    1.什么是Spring : v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:u ...

  8. iOS之类的本质

    1.本质 类的本质其实也是一个对象(类对象) 程序中第一次使用该类的时候被创建,在整个程序中只有一份. 此后每次使用都是这个类对象,它在程序运行时一直存在. 类对象是一种数据结构,存储类的基本信息:类 ...

  9. rfc2616 HTTP Protocl Analysis

    catalog . Introduction . Protocol Parameters . HTTP Message . Request . Response . HTTP Method.Conte ...

随机推荐

  1. 扩展kmp 学习笔记

    学习了一下这个较为冷门的知识,由于从日报开始看起,还是比较绕的-- 首先定义 \(Z\) 函数表示后缀 \(i\) 与整个串的 \(lcp\) 长度 一个比较好的理解于实现方式是类似于 \(manac ...

  2. Hive(三)【DDL 数据定义】

    目录 一.DDL数据定义 1.库的DDL 1.1创建数据库 1.2查询数据库 1.3查看数据库详情 1.4切换数据库 1.5修改数据库 1.6删除数据库 2.表的DDL 2.1创建表 2.2管理表(内 ...

  3. 利用python代码获取文件特定的内容,并保存为文档

    说明:有段时间需要读取上百个文件的单点能(sp),就写了下面的代码(计算化学狗努力转行中^-^) import os.path import re # 1 遍历指定目录,显示目录下的所有文件名 def ...

  4. java设计模式—Decorator装饰者模式

    一.装饰者模式 1.定义及作用 该模式以对客户端透明的方式扩展对象的功能. 2.涉及角色      抽象构件角色:定义一个抽象接口,来规范准备附加功能的类. 具体构件角色:将要被附加功能的类,实现抽象 ...

  5. clickhouse输入输出格式 TSKV CSV

    TSKVTSKV格式不适合有大量小列的输出.TSKV的效率并不比JSONEachRow差.TSKV数据查询和数据导入.不需要保证列的顺序. 支持忽略某些值,这些列使用默认值,例如0和空白行.复杂类型的 ...

  6. 【Linux】【Basis】网络

    Linux网络属性配置                           计算机网络:          TCP/IP:协议栈(使用)             ISO,OSI:协议栈(学习)     ...

  7. javascript将平行的拥有上下级关系的数据转换成树形结构

    转换函数 var Littlehow = {}; /** * littlehow 2019-05-15 * 平行数据树形转换器 * @type {{format: tree.format, sort: ...

  8. profile的使用详解

    前言 在开发过程中,我们的项目会存在不同的运行环境,比如开发环境.测试环境.生产环境,而我们的项目在不同的环境中,有的配置可能会不一样,比如数据源配置.日志文件配置.以及一些软件运行过程中的基本配置, ...

  9. java多线程5:线程间的通信

    在多线程系统中,彼此之间的通信协作非常重要,下面来聊聊线程间通信的几种方式. wait/notify 想像一个场景,A.B两个线程操作一个共享List对象,A对List进行add操作,B线程等待Lis ...

  10. noVNC实现浏览器远程访问Windows桌面

    一.简介 1.VNC介绍 VNC (Virtual Network Console)是虚拟网络控制台的缩写.它 是一款优秀的远程控制工具软件.VNC 是在基于 UNIX 和 Linux 操作系统的免费 ...