KMM
概
MMD量化了两组数据是否来自同一个分布的可能性, 那么如何利用这份信息来更好地训练, 增加模型的泛化性呢?
主要内容
我们有两组数据\(Z = ((x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)) \subseteq \mathcal{X} \times \mathcal{Y}\), \(Z' = ((x_1', y_1'), (x_2', y_2'), \ldots, (x_n', y_n')) \subseteq \mathcal{X} \times \mathcal{Y}\), 分别来自分布\(\mathrm{Pr}(x, y)\)和\(\mathrm{Pr}'(x, y)\).
一般来说, 我们训练一个模型(分类也好回归也罢), 可以归结为如下的风险函数
\]
但是我们真正想要优化的是\(R(\mathrm{Pr}', \theta, \ell(x, y, \theta))\), 当然一般的做法是假设二者是一致的. 但实际情况可能是二者并不一致, 但是注意到
\]
并记\(\beta(x, y) := \frac{\mathrm{Pr}'(x, y)}{\mathrm{Pr}(x, y)}\)(若成立), 则
\]
这实际上可以理解为对样本的一个重加权, 所以现在的问题便是, 如何估计\(\beta(x, y)\), 本文研究一种特殊的情况:
\]
即 covariate shift, 此时
\]
首先, 根据MMD我们知道, 两个分布差异性可以量化为
\]
当我们限制\(\mathcal{F}\)为 universal RKHS \(\mathcal{H}\)的时候, 上式可表示为
= \sup_{\|f\|_{\mathcal{H}} \le 1} \mathbb{E}_p [\langle \phi_x, f\rangle_{\mathcal{H}}] - \mathbb{E}_q [\langle \phi_x, f\rangle_{\mathcal{H}}] = \|\mu_p-\mu_q\|_{\mathcal{H}}.
\]
在此处, 我们关注(用\(\phi(x)\)表示\(\phi_x\))
\]
即我们希望找到一个权重\(\beta(x)\)使得上式最小, 由于分布的一些特殊性质, 完整的问题表述如下:
\mathrm{s.t.}\quad \beta(x) \ge 0, \mathbb{E}_{x \sim \mathrm{Pr}(x)}[\beta(x)] = 1.
\]
在实际问题中, 我们只有分布中的有限的采样, 也就是开头的\(Z, Z'\), 上述问题变为
\]
其中\(\kappa_i := \sum_{j=1}^{n} k(x_i, x_j')\). 于是, 我们优化如下的问题
\mathrm{s.t.} \quad \beta_i \in [0, B], |\sum_{i=1}^m \beta_i - m| \le m\epsilon.
\]
限制条件的前者限制了差异的大小, 后者则是希望其迫近概率分布.
KMM的更多相关文章
- Kotlin/Native KMM项目架构
一.什么是KMM? Kotlin Multiplatform Mobile ( KMM ) 是一个 SDK,旨在简化跨平台移动应用程序的创建.在 KMM 的帮助下,您可以在 iOS 和 Android ...
- Kotlin/Native 用KMM写Flutter插件
一.用KMM写Flutter插件 Google官方有一个写Flutter例子How to write a Flutter plugin,这里把Google plugin_codelab 例子改成用KM ...
- UI数据库
一.数据库 SQL: SQL是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集, 是一种功能齐全的数据库语言. 二.数据库管理系统 数据 ...
- 采用ubuntu系统来安装tensorflow
最近在学习google新开源的深度学习框架tensorflow.发现安装它的时候,需要依赖python2.7.X;我之前一直使用的linux是centos.而centos不更新了,里面的自带的pyth ...
- OAF_开发系列07_实现OAF下拉菜单的上下联动Poplist Synchor(案例)
20150706 Created By BaoXinjian
- SQLServer : EXEC和sp_executesql的区别
MSSQL为我们提供了两种动态执行SQL语句的命令,分别是EXEC和sp_executesql.通常,sp_executesql则更具有优势,它提供了输入输出接口,而EXEC没有.还有一个最大的好处就 ...
- 01Spring_基本jia包的导入andSpring的整体架构and怎么加入日志功能
1.什么是Spring : v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:u ...
- iOS之类的本质
1.本质 类的本质其实也是一个对象(类对象) 程序中第一次使用该类的时候被创建,在整个程序中只有一份. 此后每次使用都是这个类对象,它在程序运行时一直存在. 类对象是一种数据结构,存储类的基本信息:类 ...
- rfc2616 HTTP Protocl Analysis
catalog . Introduction . Protocol Parameters . HTTP Message . Request . Response . HTTP Method.Conte ...
随机推荐
- 疯了吧!这帮人居然用 Go 写“前端”?(一)
作者 | 郑嘉涛(羣青) 来源 | 尔达 Erda 公众号 无一例外,谈到前后端分离"必定"是 RESTful API,算是定式了.但我们知道 REST 在资源划分上的设计总是 ...
- Docker学习(六)——Dockerfile文件详解
Docker学习(六)--Dockerfile文件详解 一.环境介绍 1.Dockerfile中所用的所有文件一定要和Dockerfile文件在同一级父目录下,可以为Dockerfile父目录的子目录 ...
- Android 高级UI组件(一)GridView与ListView
1.GridView 1.GridView学习 GridView和ListView都是比较常用的多控件布局,而GridView更是实现九宫图的首选 main.xml: <?xml version ...
- CentOS 6.4 下 Python 2.6 升级到 2.7
一开始有这个需求,是因为用 YaH3C 替代 iNode 进行校园网认证时,CentOS 6.4下一直编译错误,提示找不到 Python 的某个模块,百度了一下,此模块是在 Python2.7 以上才 ...
- mybatis错误 Mapped Statements collection does not contain value for
java.lang.IllegalArgumentException: Mapped Statements collection does not contain value for 在unit里测试 ...
- 30个类手写Spring核心原理之Ioc顶层架构设计(2)
本文节选自<Spring 5核心原理> 1 Annotation(自定义配置)模块 Annotation的代码实现我们还是沿用Mini版本的,保持不变,复制过来便可. 1.1 @GPSer ...
- Linux入侵 反弹shell
目录 一.简介 二.命令 三.NetCat 一.简介 黑入服务器很少会是通过账号密码的方式进入,因为这很难破解密码和很多服务器都做了限制白名单. 大多是通过上传脚本文件,然后执行脚本开启一个端口,通过 ...
- Containing ViewControllers
Containing ViewControllers 转自:https://www.cocoanetics.com/2012/04/containing-viewcontrollers/ For a ...
- [BUUCTF]REVERSE——[WUSTCTF2020]level3
[WUSTCTF2020]level3 附件 步骤: 例行检查,64位程序,无壳 64位ida载入,找到关键函数 看样子是个base64加密,但又感觉没那么简单,再翻翻左边的函数,找到了base64加 ...
- SpringCloud Alibaba实战(12:引入Dubbo实现RPC调用)
源码地址:https://gitee.com/fighter3/eshop-project.git 持续更新中-- 大家好,我是老三,断更了半年,我又滚回来继续写这个系列了,还有人看吗-- 在前面的章 ...