Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
@article{athalye2018obfuscated,
title={Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples},
author={Athalye, Anish and Carlini, Nicholas and Wagner, David},
journal={arXiv: Learning},
year={2018}}
概
由于有很多defense方法都是基于破坏梯度(不能有效计算梯度, 梯度爆炸, 消失), 但是作者提出一种算法能够攻破这一类方法, 并提议以后的defense方法不要以破坏梯度为前提.
主要内容
\(f(\cdot)\): 模型;
\(f(x)_i\): 样本\(x\)为类别\(i\)的概率;
\(f^j(\cdot)\): 第\(j\)层;
\(f^{1..j}(\cdot)\): 第\(1\)到\(j\)层;
\(c(x)\): \(\arg \max_i f(x)_i\);
\(c^*(x)\): 真实标签.
Obfuscated Gradients
- Shattered Gradients: 一些不可微的defense, 或者一些令导数不存在的defense造成;
- Stochastic Gradients: 一些随机化的defense造成;
- Exploding & Vanishing Gradients: 通常由一些包括多次评估的defense造成.
BPDA
特例
有很多方法, 会构建一个不可微(或者其导数"不好用")的函数\(g\), 然后用模型\(f(g(x))\)替代\(f(x)\), 从而防御一些基于梯度的攻击方法, 而且这类方法往往要求\(g(x) \approx x\).
这类防御方法, 可以很简单地用
\]
替代, 从而被攻破(如果我们把\(g(x)\)视为模型的第1层, 那我们实际上就是攻击第二层).
一般情形
假设\(f^i(x)\)(即第i层)是不可微, 或者导数“不好用", 则我们首先构造一个可微函数\(g(x)\), 使得\(g(x) \approx f^i(x)\), 在反向传递导数的时候(注意只在反向用到\(g\)), 用\(\nabla_x g\)替代\(\nabla f^i(x)\).
注: 作者说在前向也用\(g(x)\)是低效的.
EOT
这类方法使用于攻破那些随机化的defense的, 这类方法往往会从一个变换集合\(T\)中采样\(t\), 并建立模型\(f(t(x))\), 如果单纯用\(\nabla f(t(x))\) 来攻击效果不好, 可以转而用\(\nabla \mathbb{E}_{t \sim T} f(t(x)) = \mathbb{E}_{t \sim T} \nabla f(t(x))\)替代.
Reparameterization
重参用于针对梯度爆炸或者消失的情况, 因为这种情况往往出现于\(f(g(x))\), 而\(g(x)\)是对\(x\)的一个多次评估(所以\(f(g(x))\)可以理解为一个很深的网络).
策略是利用构建\(x=h(z)\), 并且满足\(g(h(z))=h(z)\) (咋看起来很奇怪, 看了下面的DefenseGAN就明白了).
利用\(f(h(z))\), 我们找到对应的对抗样本\(h(z_{adv})\).
具体的案例
Thermometer encoding
这里的\(\tau\)是针对样本每一个元素\(x_{i,j,c}\)的, \(\tau:x_{i,j,c} \rightarrow \mathbb{R}^l\):
\left \{
\begin{array}{ll}
1 & x_{i,j,c}>k/l \\
0 & else.
\end{array} \right.
\]
只需令
\]
Input transformations
包括:
image cropping, rescaling, bit-depth reduction, JPEG compression, image quilting
既包括随机化又包括了不可微, 所以既要用EPDA, 也要用EOT.
LID
LID能够防御
\]
的攻击的主要原因是由于该函数陷入了局部最优. 因为LID高的样本不都是对抗样本, 也有很多普通样本.
忽视LID, 用原始的L2attack就能够有效攻破LID.
Stochastic Activation Pruning
SAP实际上是dropout的一个变种, SAP会随机将某层的\(f^i\)的某些元素突变为0(其概率正比于元素的绝对值大小).
这个方法可以用EOT攻破, 即用\(\sum_{i=1}^k \nabla_xf(x)\)来代替\(\nabla_x f(x)\).
Mitigating through randomization
这个方法的输入是\(229\times 229\)的图片, 他会被随机变换到\(r\times r\)大小, \(r\in[229, 331)\), 并随机补零使得其大小为\(331\times 331\).
同样, 用EOT可以攻破.
PixelDefend
pass
DenfenseGAN
对于每一个样本, 首先初始化\(R\)个随机种子\(z_0^{(1)}, \ldots, z_0^{(R)}\), 对每一个种子, 利用梯度下降(\(L\)步)以求最小化
\min \quad \|G(z)-x\|_2^2,
\]
其中\(G(z)\)为利用训练样本训练的生成器.
得到\(R\)个点\(z_*^{(1)},\ldots, z_*^{(R)}\), 设使得(DGAN)最小的为\(z^*\), 以及\(\hat{x} = G(z^*)\), 则\(\hat{x}\)就是我们要的, 样本\(x\)在普通样本数据中的投影. 将\(\hat{x}\)喂入网络, 判断其类别.

这个方法, 利用梯度方法更新的难处在于, \(x \rightarrow \hat{x}\)这一过程, 包含了\(L\)步的内循环, 如果直接反向传梯度会造成梯度爆炸或者消失.
所以攻击的策略是:
\]
找到\(z_{adv}\), 于是\(x_{adv}=G(z_{adv})\).
注意, 通过这个式子能找到对抗样本说明, 由训练样本训练生成器, 生成器的分布\(p_G\), 实际上并不能能够撇去对抗样本.
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples的更多相关文章
- ICML 2019论文录取Top100:谷歌霸榜
[导读]人工智能顶级会议ICML 2019发布了今年论文录取结果.提交的3424篇论文中,录取了774篇,录取率为22.6%,较去年有所降低.从录取论文数量来看,谷歌成为今年最大赢家,紧随其后的是MI ...
- Configuring Apache Kafka Security
This topic describes additional steps you can take to ensure the safety and integrity of your data s ...
- 每日英语:Apple's Latest iPhone Puts Focus Back on Fingerprint Security
Apple's latest product launch could breathe new life into a technology that failed to take hold the ...
- metasploit-post模块信息
Name Disclosure Date Rank Description ---- ...
- What does it mean for an algorithm to be fair
What does it mean for an algorithm to be fair In 2014 the White House commissioned a 90-day study th ...
- Visual Studio TFS Branching and Merging Guidance
Origin URL:https://msdn.microsoft.com/en-us/magazine/gg598921.aspx Bill Heys and Willy-Peter Schaub ...
- Chronic sleep loss cannot be cured that easily
Chronic sleep loss cannot be cured that easily Sleeping in on Saturday after a few weeks of too litt ...
- 使用机器学习检测TLS 恶意加密流——业界调研***有开源的数据集,包括恶意证书的,以及恶意tls pcap报文***
2018 年的文章, Using deep neural networks to hunt malicious TLS certificates from:https://techxplore.com ...
- 每日英语:A Buying Guide to Air-Pollution Masks
Blue skies were finally visible in the capital on Thursday after the region suffered fromseven strai ...
随机推荐
- [云原生]Docker - 简介
目录 什么是Docker? 为什么使用Docker? 对比传统虚拟机总结 什么是Docker? Docker是一个开源项目,诞生于2013年初,最初是dotCloud公司内部的一个业务项目.它基于Go ...
- 容器之分类与各种测试(四)——multiset
multiset是可重复关键字的关联式容器,其与序列式容器相比最大的优势在于其查找效率相当高.(牺牲空间换取时间段) 例程 #include<stdexcept> #include< ...
- Linux网络管理(一)之配置主机名与域名
Linux网络管理(一)之配置主机名与域名参考自:[1]修改主机名(/etc/hostname和/etc/hosts区别) https://blog.csdn.net/shmily_lsl/artic ...
- oc中调用c函数 实现将字符串转换成unsigned char
帮助码友解决问题,从而复习了一下oc中调用c函数的方式 1,新建c 头文件 test.h 定义 c 函数 #ifndef test_h #define test_h void verificatio ...
- CentOS6设置Django开发环境
今天在我的Centos6.5机器上安装 Django 开发环境,在安装完使用 "django-admin.py startproject myapp" 创建应用的时候报了下面的错误 ...
- 使用$.ajax方式实现页面异步访问,局部更新的效果
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 线程开启的第一种方法:通过创建Thread的子类的对象的方式
package cn.itcast.demo16.demo06.Thread;/** * @author newcityman * @date 2019/7/22 - 21:47 */public c ...
- 【MySQL】统计累计求和
https://geek-docs.com/sql/sql-examples/sql-cumulative-sum.html
- Java oop 笔记
摘要网址:http://note.youdao.com/noteshare?id=bbdc0b970721e40d327db983a2f96371
- Java中的对于多态的理解
一.什么是多态 面向对象的三大特性:封装.继承.多态 多态的定义:指允许不同类的对象对同一消息做出响应.即同一消息可以根据发送对象的不同而采用多种不同的行为方式.(发送消息就是函数调用) 实现多态的技 ...