Problem List(其实这几场全是附中出的)

这场比赛的题目相当有价值,特别是前两题,相当的巧妙。

A.路径二进制

数据范围这么小,当然是搜索。

\(30pts:\)大力搜索出奇迹,最后统计答案的时候拿一个桶存一下已经统计了哪些数,由于\(d<=20\),所以\(result<=2^20\),所以还是存的下的。

\(60pts:\)我们发现重复状态其实非常之多,我们加上一个记忆化进行剪枝:\(vis[i][t][S]\)表示\(i\)号点、时间是\(t\)、当前数是\(S\)是否已经访问过,如果已经访问过那就可以回溯了。时间复杂度和空间复杂度都是\(O(nd2^d)\)的,时间上可以过满数据,但是空间会被卡。

\(100pts:\)相当巧妙的方法来优化空间:我们在搜索时进行折半,只从一开始搜索长度为\(\frac{1}{2}d\)的链并用状压存下是否可达存下来,然后分别在每个点往外搜索长度为\(\frac{1}{2}d\)的链并状压存下,最后遍历每个点暴力合并前后两段就可以了。空间复杂度是\(n^22^{\frac{1}{2}d}+2^d\)的,时间是\(n^22^d\)的。

B.停车场

\(20pts:\)悬线法可以解决静态的平面最大全0矩阵问题。当然也可以用\(DP\)解决:设\(f_{i,j}\)为在结点\((i,j)\)向左上能延伸的最大方形的边长,\(h_{i,j}\)为向上能有多少个空位,\(r_{i,j}\)是向左的空位,于是得到\(f_{i,j}=min\{r_{i,j},h_{i,j},f_{i-1,j-1}+1\$。复杂度\)O(n^2m)$。

\(70pts:\)你会发现没有这一档部分分,这个是我考场上乱搞搞出来的分数。你会发现一个神奇的性质:

假设我们要在\(now\)这个点放一辆车,那么它只会对它右下角的点的\(DP\)值产生影响,并且下面这种已经放过车的右下方的位置的\(DP\)值也没有影响,所以我们要更新的点的数量就比较有限了。关于如何遍历这个奇形怪状的东西,我们只需要一行一行枚举,存一下当前遇到的最左边的车的横坐标,以后便利的横坐标都要小于这个值就行了)。另外我们要动态查询\(f\)的最大值,这个东西用一棵权值线段树当成平衡树跑就可以实现\(log\)级别,所以总的时间复杂度最劣是\(O(n^2dlogn)\)的,但是只要随机它能飞起来。

\(100pts:\)简直精妙到不得了的,时间复杂度应该是最劣\(n^2logn+mn\)的。答案显然是递减的,并且答案的值域就只有\([1,2000]\),还是满足决策单调性的!这就使人浮想联翩了。由于加上一辆车可能会破坏很多答案,破坏性质不优美,即使用平衡树维护啥的都很吃力,所以我们反过来想:我们移走一辆车,看看包括它的矩形最大是多少的,这个时候两个答案取\(max\)是满足交换律的,相当优美。

但是光光这样还是相当困难。我们再加上一个小小的转换:记录上一次的答案是\(lastans\),那么我这次就依次验证有没有矩形包含这个新空格且大小为\(lastans+1\)、\(lastans+2\)······直到不合法为止。这个可以用平衡树来解决:设\(r1_{i,j}\)、\(r2\)、\(r3\)、\(r4\)分别是它向四个方向能延伸多少,那么我在指定空格的那个纵列上依次扫下来,看看这个高度为\(lastans+1\)的窗口内的向左、向右的最小值加起来是否能够大于等于\(lastans+1\)。显然一个空格只会影响它所在的那一横一竖的\(r\),暴力修改即可。

它的时间复杂度显然是均摊的,最劣是\(n^2logn+mn\),据说用并查集可以优化到\(n^2\alpha\)的。

这启发我们在答案值域很小、满足单调性和决策单调性的时候可以使用反过来的、判定性的方法解决问题。

学军中学csp-noip2020模拟5的更多相关文章

  1. 2016 Multi-University Training Contest 8 solutions BY 学军中学

    1001: 假设有4个红球,初始时从左到右标为1,2,3,4.那么肯定存在一种方案,使得最后结束时红球的顺序没有改变,也是1,2,3,4. 那么就可以把同色球都写成若干个不同色球了.所以现在共有n个颜 ...

  2. Java多线程 编写三各类Ticket、SaleWindow、TicketSaleCenter分别代表票信息、售票窗口、售票中心。 售票中心分配一定数量的票,由若干个售票窗口进行出售,利用你所学的线程知识来模拟此售票过程。

    package com.swift; import java.util.ArrayList; import java.util.HashMap; import java.util.List; impo ...

  3. 学军NOIP2016模拟赛1

    GTMD这么水的一套题没有AK T1:妥妥的二分答案,贪心check. T2:问题可以转化为最长上升(还是下降我记不住了)子序列. T3:发现点被覆盖上的顺序是一定的.求出这个顺序,第一个操作在线段树 ...

  4. 学军NOI训练13 T3 白黑树

    唉,大学军有自己的OJ就是好,无限orz 只有周六的比赛是开放的囧,这场比赛最后因为虚拟机卡住没有及时提交…… 否则就能让大家看到我有多弱了…… 前两题题解写的很详细,可以自己去看,我来随便扯扯T3好 ...

  5. 2019学军集训记&PKUWC2020游记

    题解:https://www.cnblogs.com/gmh77/p/12051260.html 集训(×) 被虐(√) Day1 二段考 Day2 绝对不鸽 没那回事 还在路上 其实就是咕了两天 晚 ...

  6. NOIP2020 模拟赛 B 组 Day6

    非常巧妙的一场模拟赛,比较偏向于 Atcoder 的风格,考场上做出了 A .C 两题. A. 礼物购买 排完序后一个个礼物地枚举时间复杂度是\(\Theta(nm)\)的,不能接受.但是注意到,若当 ...

  7. 从零开始学Python04作业思路:模拟ATM电子银行

    标签(空格分隔):Python 一,程序文件说明 程序分为5个组成部分 bin:放置Python程序的启动接口文件 通过Python命令启动文件夹内文件即正常执行Python程序 例如:ATM_sta ...

  8. 20150127 学军集训 day1

    day1 就直接考试... 和说好的不一样啊 第一题看都没怎么看就pass了,构造的题我一向没什么把握.然后瞟到第三题有30分可做,虽然要写的代码很大...反正我是写习惯了..期间纠结了一会还写了一个 ...

  9. ZJOI2019Round#1

    考的这么差二试基本不用去了 不想说什么了.就把这几天听课乱记的东西丢上来吧 这里是二试乱听课笔记ZJOI2019Round#2 ZJOI Round#1 Day1 M.<具体数学>选讲 罗 ...

随机推荐

  1. JAVA的array中indexOf

    记得龙哥有个重构的文章里说直接判断啥的. 今天看JDK ArrayList,看到了他的 indexOf,他先判断,后进入循环,看似写了两遍for 循环,但是简单明了暴力.i like it . pub ...

  2. .net,C#,Vb,F#,Asp,Asp.net区别以及作用和方向

    .net是平台,其他都是运行在其.NET FrameWork环境下的 C#,Vb都是语言运行在.net 平台下 Asp,Asp.net 都是用来写Web网页的,但是Asp和Asp.net有区别 Asp ...

  3. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解

    前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...

  4. BOOST内存管理-intrusive_ptr

    参考链接https://blog.csdn.net/harbinzju/article/details/6754646 intrusive_ptr 是shared_ptr的插入式版本.与shared_ ...

  5. 第一个只出现一次字符的位置 牛客网 剑指Offer

    第一个只出现一次字符的位置  牛客网 剑指Offer 题目描述 在一个字符串(0<=字符串长度<=10000,全部由字母组成)中找到第一个只出现一次的字符,并返回它的位置, 如果没有则返回 ...

  6. 经典200例-002 为项目添加DLL文件引用

    项目右击,添加引用,(或菜单栏选择"项目","添加引用"),COM选项卡 复制去Google翻译翻译结果  

  7. 使用vsftpd 搭建ftp服务

    ftp 基础服务器基础知识 ftp有三种登录方式.匿名登录(所有用户).本地用户.虚拟用户(guest). FTP工作模式 主动模式:服务端从20端口主动向客户端发起链接. 控制端口21:数据传输端口 ...

  8. k8s中部署springcloud

    安装和配置数据存储仓库MySQL 1.MySQL简介 2.MySQL特点 3.安装和配置MySQL 4.在MySQL数据库导入数据 5.对MySQL数据库进行授权 1.MySQL简介 MySQL 是一 ...

  9. Mysql教程:(五)多表查询

    多表查询 select name,student.class,student.number,maths,chinese,english from student,score where student ...

  10. 大数据SQL中的Join谓词下推,真的那么难懂?

    听到谓词下推这个词,是不是觉得很高大上,找点资料看了半天才能搞懂概念和思想,借这个机会好好学习一下吧. 引用范欣欣大佬的博客中写道,以前经常满大街听到谓词下推,然而对谓词下推却总感觉懵懵懂懂,并不明白 ...