Linux内存管理和寻址详解
1.概念
- 内存管理模式
段式:内存分为了多段,每段都是连续的内存,不同的段对应不用的用途。每个段的大小都不是统一的,会导致内存碎片和内存交换效率低的问题。
页式:内存划分为多个内存页进行管理,如在 Linux 系统中,每一页的大小为 4KB
。由于分了页后,就不会产生细小的内存碎片。但是仍然也存在内存碎片问题。
段页式:段式和页式结合。
- 地址类型划分
逻辑地址:程序所使用的地址,通常是没被段式内存管理映射的地址,称为逻辑地址
线性地址:通过段式内存管理映射的地址,称为线性地址,也叫虚拟地址
虚拟地址:通过段式内存管理映射的地址,称为线性地址,也叫虚拟地址
物理地址:物理内存地址
说明:
Inetel处理器中,逻辑地址是「段式内存管理」转换前的地址,线性地址则是「页式内存管理」转换前的地址。
段式内存管理映射而成的地址不再是“物理地址”了,Intel 就称之为“线性地址”(也称虚拟地址)。于是,段式内存管理先将逻辑地址映射成线性地址,然后再由页式内存管理将线性地址映射成物理地址。
linux内存主要是页式内存管理,同时也有涉及段式机制。当前Linux内核所采取的办法是使段式映射的过程实际上不起什么作用。
Intel最早处理器80286是纯段式管理,80386段式和页式均存在。
2.页式管理
x86架构32位cpu
二级页表选址方式,一个内存页4KB大小,一级页目录表1024项,二级页表1024项,一个页表项4字节。一级页目录表项全部分配,二级页表在需要的时候创建。(局部性原理)。
虚拟地址32位
10+10+12,分别索引1级页表号,2级页表项,记录物理基地址的偏移地址。使用PAE机制之后32bit系统支持最大的内存是64GB(地址是32+4=36位)。
线性地址寻址物理地址步骤
先根据10位寻址1级页表号,1级页表号中记录了2级页表的地址
找到2级页表地址后,接着根据虚拟地址的另10位寻找2级页表中表项的位置
找到2级页表的表项之后,表项中记录了该虚拟地址映射物理地址的起始地址,表项的大小是4字节32bit
根据找到的物理地址的起始地址结合虚拟地址的后12位作为偏移计算出最终的物理地址
x86架构 64位cpu
存在更多级页表
- 全局页目录项 PGD(Page Global Directory
- 上层页目录项 PUD(Page Upper Directory)
- 中间页目录项 PMD(Page Middle Directory)
- 页表项 PTE(Page Table Entry)
线性地址寻址物理地址步骤
- 线性地址为48bit,最大物理地址为52bit,实际物理内存地址总线宽度是40bit,也就是支持1TB物理内存
- x86_64有四级页表,原理同x86系统,也是一层层的寻址
- CR3寄存器保存最高层一级表的起始物理地址,因此寻址首先就是要获取到CR3寄存器中的值
- 每个PTE表项的大小是8个字节也就是64bit
TLB
在 CPU 芯片中,加入了一个专门存放程序最常访问的页表项的 Cache,这个 Cache 就是 TL(Translation Lookaside Buffer) 。通常称为页表缓存、转址旁路缓存、快表等。那么在CPU的内存管理单元MMU寻址时,会先查 TLB,如果没找到,才会继续查常规的页表。
专有名词
PDT:页目录表,多级页表一级页表,32bit系统有1024个页目录
PTT:页表项表,多级页表二级页表,32bit系统有每个页目录下有1024个页表项,每个表项4个字节
PDE:页表的基址,是PDT中一项
PTE:是页的基址,是PTT中一项
GDT:全局描述符表,逻辑地址转为线性地址用到
LDT:局部描述符表,逻辑地址转为线性地址用到
3.地址划分
32系统
内核1G: 0xC0 00 00 01 - 0xFF FF FF FF
用户3G: 0x00 00 00 00 - 0xC0 00 00 00
0xC0 00 00 00 == 3G64位系统:
内核128T: 0xFF FF 80 00 00 00 00 00 - 0xFF FF FF FF FF FF FF FF (高位)
0xFF FF 7F FF FF FF FF FF - 0xFF FF FF FF FF FF FF FF(自己计算)用户128T: 0x00 00 00 00 00 00 00 00 - 0x00 00 7F FF FF FF FF FF (低位)
0x00 00 80 00 00 00 00 00 - 0x00 00 80 00 00 00 00 00 (自己计算)
0x00 00 7F FF FF FF FF FF == 127T
疑问:64位系统128T是分界线是127T?
访问权限
进程在用户态时,只能访问用户空间内存
只有进入内核态后,才可以访问内核空间的内存PAE机制
CPU位宽指的是一个时钟周期内CPU能处理的二进制位数,普通场景中32位系统CPU的地址总线可以是32位,但是引入了PAE机制之后,16位CPU的地址总线位宽可以是20位(物理内存1M),32位CPU的地址总线可以是36位(物理内存64GB),64位CPU的地址总线位宽可以是40位(物理内存1TB)。因此我们不能简单的说32位系统只支持最大4GB的内存条。
4. 调试
程序寄存器
cs:是代码段寄存器
ds:是数据段寄存器
ss:是堆栈段寄存器
es:是扩展段寄存器
fs:是标志段寄存器 32位之后才有
gs:是全局段寄存器 32位之后才有示例一个内核宕机的日志:
RIP: 0010:[] [] xxxxxxxxxx+0x69/0x70
RSP: 0018:ffff886241737d98 EFLAGS: 00010246
RAX: ffff880034814d40 RBX: ffff881fc6248740 RCX: 0000000000000200
RDX: 0000000000000000 RSI: 0000000000000286 RDI: ffff881fc6381858
RBP: ffff886241737d98 R08: ffff886241734000 R09: 0000000000000000
R10: ffff880034814d40 R11: 0000000000000200 R12: ffff881fc62487a0
R13: 0000000000000000 R14: 00007fff86cb6260 R15: ffff881fc6381858
FS: 00007f78b59b8720(0000) GS:ffff885ffe3c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f690a057180 CR3: 0000006208985000 CR4: 00000000003627e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400查看程序寄存器
使用GDB随意调试一个linux 32位上的ELF32的可执行文件,使用info r命令查看一下寄存器情况:
段寄存器有0x23和0x2b两种情况:
十六进制:0023
二进制:0000000000100 0 11 - 段序号:4 - 表类型:GDT - 特权级:Ring3
十六进制:002B
二进制:0000000000101 0 11 - 段序号:5 - 表类型:GDT - 特权级:Ring3段序号:从第四位开始 表类型:第三位 特权级:第1、2位
Linux下没有找到可以直接用什么命令或者工具查看GDT的方式,于是去源代码中寻找答案:
看到了吗,这两项所描述的段和Windows一样,基地址为0,大小为4GB。
Windows和Linux都选择了通过这种方式架空了CPU的分段内存管理机制。
但需要说明一下的时,虽然两个操作系统都是这种情况,但并不意味着段机制彻底没用到,CPU的任务管理TSS还是需要用到,这一点大家知道就行了,在linux64位系统下分段机制不被待见,但是操作系统仍然会保持先分段再分页的寻址方式。
5.参考资料:
图形化解释内存:https://segmentfault.com/a/1190000023055534#item-2-6
图形代码结合:https://www.cnblogs.com/alantu2018/p/9177356.html
当代操作系统内存管理:https://www.cnblogs.com/xuanyuan/p/15266447.html
GDT:https://en.wikipedia.org/wiki/Global_Descriptor_Table
线性地址转为物理地址实践:https://www.cnblogs.com/onetrainee/p/11721946.html
64位系统40位物理地址解释:https://zhuanlan.zhihu.com/p/69334474
Linux内存管理和寻址详解的更多相关文章
- Linux内存管理之mmap详解
转发之:http://blog.chinaunix.net/uid-26669729-id-3077015.html Linux内存管理之mmap详解 一. mmap系统调用 1. mmap系统调用 ...
- Linux 内存管理之mmap详解
找了好多,最后发现下面这篇时讲的比较通俗易懂的. Linux内存管理之mmap详解-heavent2010-ChinaUnix博客 http://blog.chinaunix.net/uid-2666 ...
- 转:Linux内存管理之mmap详解
一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进内存.文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零.munmap执行相 ...
- [转载] Linux内存管理之mmap详解
转载自http://blog.chinaunix.net/uid-26669729-id-3077015.html 一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进 ...
- Linux内存管理之mmap详解 【转】
转自:http://blog.chinaunix.net/uid-26669729-id-3077015.html 一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进 ...
- Linux内存管理之mmap详解 (可用于android底层内存调试)
注:将android底层malloc换为mmap来获取内存,可将获取到的内存添加tag,从而再利用meminfo进行分析,可单独查看该tag的内存,从而进行分析. 一. mmap系统调用 1. mma ...
- Linux服务管理 systemctl命令详解
Linux服务器,服务管理--systemctl命令详解,设置开机自启动 syetemclt就是service和chkconfig这两个命令的整合 任务 旧指令 新指令 使某服务自动启动 ch ...
- Linux权限管理命令chmod详解
命令chmod详解 命令chmod(英文原意:change permissions mode of a file),所在路径为: 可以看到,它的路径为:/usr/bin/chmod,因此,它的执行权限 ...
- JVM内存管理--GC算法详解
标记/清除算法 首先,我们回想一下上一章提到的根搜索算法,它可以解决我们应该回收哪些对象的问题,但是它显然还不能承担垃圾搜集的重任,因为我们在程序(程序也就是指我们运行在JVM上的JAVA程序)运行期 ...
随机推荐
- Netty:Netty的介绍以及它的核心组件(二)—— ChannelFuture与回调
Callback 回调 一个 Callback(回调)就是一个方法,一个提供给另一个的方法的引用. 这让另一个方法可以在适当的时候回过头来调用这个 callback 方法.Callback 在很多编程 ...
- Sending and Trapping Signals
http://mywiki.wooledge.org/SignalTrap Signals are a basic tool for asynchronous interprocess communi ...
- Redis源码分析(intset)
源码版本:4.0.1 源码位置: intset.h:数据结构的定义 intset.c:创建.增删等操作实现 1. 整数集合简介 intset是Redis内存数据结构之一,和之前的 sds. skipl ...
- 动态sql & 抽取可重用sql
抽取可重用的sql片段 抽取:<sql id="xx"></sql> 使用:<include refid="xx">< ...
- [python]pytest实现WEB UI自动化
前言:其实这篇写的是pytest的测试框架运用,实现自动化和https://www.cnblogs.com/Jack-cx/p/9357658.html 原理一致 1.为啥不用unittest Pyt ...
- 暑假算法练习Day5
咕咕了好几天哈哈哈哈,因为这几天在忙一些其他事(bushi ,好吧其实就是自己太懒啦,从今天开始继续每天的算法练习 1010 一元多项式求导 (25 分) 设计函数求一元多项式的导数.(注:\(x^n ...
- ES6基础知识(Reflect)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Github webhooks 自动部署博客文章,使用总结【含视频】
作者:小傅哥 博客:https://bugstack.cn 原文:https://mp.weixin.qq.com/s/VtTHUfyiITNSoGy052jkXQ 沉淀.分享.成长,让自己和他人都能 ...
- eclipse查看jar包源代码
方法一:将jd-gui集成在Eclipse中 https://jingyan.baidu.com/article/b24f6c8275536686bfe5daed.html 下载2个反编译文件, ...
- python实现Canny边缘检测
一,定义与概述 使用图像梯度的算法,在有些场景不适用,如检测大量头发边缘,边缘不够细腻.所以有人提出了Canny算法! 非极大值抑制,保留极大值 参考:https://www.cnblogs.com/ ...