Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\)
Link.
给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树时结点深度之和的最小值。
\(n\le10^5\),\(r-l+1\le200\)。
\(\mathcal{Solution}\)
先把不作修改的二叉搜索树建出来——按值升序遍历,单调栈维护即可,这就相当于建 \((p_i,i)\) 的笛卡尔树。考虑此时树上一个“可修改连通块”的性质:它的“不可修改子树”的父亲和子树大小是一定的,无论这棵子树内部如何作修改。这提示我们可以独立地考虑每个“可修改连通块”。首先遍历得到连通块邻接的子树大小(若有空儿子,增加一个大小为 \(0\) 的子树,用于占位),得到序列 \(a_{1..k}\),则在其上 DP,令 \(f(l,r)\) 表示将 \(a_{l..r}\) 建出二叉搜索树的最小深度和,则:
\]
所以 \(\mathcal O((r-l+1)^3)\) 求出所有 \(f\),求和就能得到答案。复杂度 \(\mathcal O(n+(r-l+1)^3)\)。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
inline void chkmin( LL& a, const LL b ) { b < a && ( a = b ); }
const int MAXN = 1e5, MAXK = 200;
int n, a[MAXN + 5], b[MAXN + 5], L, R;
int top, stk[MAXN + 5], ch[MAXN + 5][2], siz[MAXN + 5];
int idx, val[MAXK + 5];
LL f[MAXK + 5][MAXK + 5], sum[MAXK + 5];
inline void collect( const int u ) {
if ( !u || b[u] > R ) return void( val[++idx] = siz[u] );
collect( ch[u][0] ), collect( ch[u][1] );
}
inline LL solve( const int u ) {
idx = 0, collect( u );
rep ( i, 1, idx ) sum[i] = sum[i - 1] + val[i];
rep ( len, 2, idx ) {
for ( int l = 1, r; ( r = l + len - 1 ) <= idx; ++l ) {
LL& cur = f[l][r] = 1ll << 60;
rep ( k, l, r - 1 ) {
chkmin( cur, f[l][k] + f[k + 1][r] );
}
cur += sum[r] - sum[l - 1] + r - l;
}
}
return f[1][idx];
}
int main() {
scanf( "%d", &n );
rep ( i, 1, n ) scanf( "%d", &a[i] ), b[a[i]] = i;
scanf( "%d %d", &L, &R );
rep ( i, 1, n ) {
while ( top && b[i] < b[stk[top]] ) ch[i][0] = stk[top--];
if ( top ) ch[stk[top]][1] = i;
stk[++top] = i;
}
per ( i, n, 1 ) siz[a[i]] = siz[ch[a[i]][0]] + siz[ch[a[i]][1]] + 1;
LL ans = L == 1 ? solve( a[1] ) : 0;
rep ( i, 1, n ) if ( b[i] < L || R < b[i] ) {
ans += siz[i];
if ( L <= b[ch[i][0]] && b[ch[i][0]] <= R ) ans += solve( ch[i][0] );
if ( L <= b[ch[i][1]] && b[ch[i][1]] <= R ) ans += solve( ch[i][1] );
}
printf( "%lld\n", ans );
return 0;
}
Solution -「Gym 102798K」Tree Tweaking的更多相关文章
- Solution -「Gym 102759I」Query On A Tree 17
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- Solution -「Gym 102979E」Expected Distance
\(\mathcal{Description}\) Link. 用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...
- Solution -「Gym 102979L」 Lights On The Road
\(\mathcal{Description}\) Link. 给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Solution -「Gym 102956B」Beautiful Sequence Unraveling
\(\mathcal{Description}\) Link. 求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...
- Solution -「Gym 102956F」Border Similarity Undertaking
\(\mathcal{Description}\) Link. 给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...
- Solution -「Gym 102956A」Belarusian State University
\(\mathcal{Description}\) Link. 给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
随机推荐
- Centos安装DenyHosts
一.背景 个人申请的腾讯云主机被扫描端口,数百次登录失败的尝试 解决方法:安装工具,记录并屏蔽恶意访问. 二.检查环境 系统安装的sshd是否支持tcp_wrappers(默认都支持) ldd /us ...
- 深度分析 [go的HttpClient读取Body超时]
故障现场 本人负责的主备集群,发出的 HttpClient 请求有 30%概率超时, 报context deadline exceeded (Client.Timeout or context can ...
- 二维数组与稀疏数组的转换---dataStructures
首先我们看一个需求 在11 * 11 的五子棋的棋盘中 我们使用0代表十字交叉点也是无效的数据 用1代表黑棋 用2代表蓝棋 那么所看到的棋盘如下 改用数字显示后就如一下样式 现在我们需要将怎个棋盘存储 ...
- xray与burp联动被动扫描
最近也是刚实习了几天,看见带我的那位老哥在用xray,而且贼溜,所以我想写几篇关于xray的使用的文章 0x00 xray建立监听 在实际测试过程中,除了被动扫描,也时常需要手工测试.这里使用 Bur ...
- Android EditText不弹出输入法总结,焦点问题的总结
看一个manifest中Activity的配置,如果这个页面有EditText,并且我们想要进入这个页面的时候默认弹出输入法,可以这样设置这个属相:android:windowSoftInputMod ...
- dubbo系列二、dubbo请求流程记录
目录 1.dubbo请求处理流程 1.1. consumer端处理流程 1.2.provider端处理流程 1.3.dubbo请求分析记录-图 泳道图 xmind图 2.dubbo请求核心说明 1.d ...
- 1000粉!使用Three.js制作一个专属3D奖牌🥇
背景 破防了 !突然发现 SegmentFault 平台的粉丝数量已经突破 1000 了,它是我的三个博客平台掘金.博客园.SegmentFault中首个粉丝突破 1000 的,于是设计开发这个页面, ...
- 2021年SpringBoot面试题200道及答案
https://blog.csdn.net/yanpenglei/article/details/120822218 https://blog.csdn.net/ldb987/article/deta ...
- 基于SpringBoot如何实现一个点赞功能?
基于SpringBoot如何实现一个点赞功能? 解析: 基于 SpringCloud, 用户发起点赞.取消点赞后先存入 Redis 中,再每隔两小时从 Redis 读取点赞数据写入数据库中做持久化存储 ...
- gorm中的高级查询
智能选择字段 GORM 允许通过 Select 方法选择特定的字段,如果您在应用程序中经常使用此功能,你也可以定义一个较小的结构体,以实现调用 API 时自动选择特定的字段,例如: type User ...