\(\mathcal{Decription}\)

  Link.

  平面上有一个左下角坐标 \((0,0)\) 右上角坐标 \((W,H)\) 的矩形,起初长方形内部被涂白。

现在给定 \(n\) 个点,你每次在以下 \(4\) 种操作中选择一种:

  • 将矩形内 \(x<x_i\) 的区域涂黑;
  • 将矩形内 \(x>x_i\) 的区域涂黑;
  • 将矩形内 \(y<y_i\) 的区域涂黑;
  • 将矩形内 \(y>y_i\) 的区域涂黑。

  最大化操作后白色矩阵周长。

  \(n\le3\times10^5\),\(W,H\le10^8\)。

\(\mathcal{Solution}\)

  就挺 amazing 的题呐。

  题意等价于求周长最大的矩形,使得矩形内不包含任意一个点。

  首先,答案有下界 \(2\max\{H,W\}+2\)。考虑一个周长超过该下界的矩形,它一定跨过 \(y=\frac{H}2\) 或 \(x=\frac{W}2\),所以只需要分别求出跨过着两条直线的周长最大的合法矩形。下以跨过 \(l:y=\frac{H}2\) 的情形为例。

  从左到右用一条扫描线,设当前 \(x=x_0\) 轴上高于 \(l\) 的最低点离 \(l\) 的距离为 \(u\),低于 \(l\) 的最高点离 \(l\) 的距离为 \(d\),那么当矩形过 \(x=x_0\) 时,高度 \(\le u+d\)。

  接下来,把从 \(x_1\) 到 \(x_2\) 的横向宽度表达为 \((W-x_1)-(W-x_2)\),然后线段树维护矩形左边界为 \(x=x_0\) 时,高度 \(+(W-x_1)\) 的值。用单调递减的单调栈维护 \(u\) 和 \(d\),弹栈时修改一段区间的值,最后求前缀最大值即可。(建议参照代码理解。)

\(\mathcal{Code}\)

/* Clearink */

#include <stack>
#include <cstdio>
#include <algorithm> inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int min_ ( const int a, const int b ) { return a < b ? a : b; }
inline int max_ ( const int a, const int b ) { return a < b ? b : a; } const int MAXN = 3e5;
int n, W, H, x[MAXN + 5], up[MAXN + 5], dn[MAXN + 5];
std::stack<int> stku, stkd; struct Point {
int x, y;
inline bool operator < ( const Point& p ) const { return x < p.x; }
} p[MAXN + 5]; struct SegmentTree {
int mx[MAXN << 2], tag[MAXN << 2]; inline void pushup ( const int rt ) {
mx[rt] = max_ ( mx[rt << 1], mx[rt << 1 | 1] );
} inline void pushdn ( const int rt ) {
int& k = tag[rt];
if ( !k ) return ;
mx[rt << 1] += k, tag[rt << 1] += k;
mx[rt << 1 | 1] += k, tag[rt << 1 | 1] += k;
k = 0;
} inline void clear ( const int rt, const int l, const int r ) {
mx[rt] = tag[rt] = 0;
if ( l == r ) return ;
int mid = l + r >> 1;
clear ( rt << 1, l, mid ), clear ( rt << 1 | 1, mid + 1, r );
} inline void update ( const int rt, const int l, const int r,
const int ul, const int ur, const int uv ) {
if ( ul <= l && r <= ur ) return mx[rt] += uv, tag[rt] += uv, void ();
int mid = l + r >> 1; pushdn ( rt );
if ( ul <= mid ) update ( rt << 1, l, mid, ul, ur, uv );
if ( mid < ur ) update ( rt << 1 | 1, mid + 1, r, ul, ur, uv );
pushup ( rt );
} inline int query ( const int rt, const int l, const int r,
const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return mx[rt];
int mid = l + r >> 1, ret = 0; pushdn ( rt );
if ( ql <= mid ) ret = query ( rt << 1, l, mid, ql, qr );
if ( mid < qr ) ret = max_ ( ret, query ( rt << 1 | 1, mid + 1, r, ql, qr ) );
return ret;
}
} segt; inline int solve ( const int n, const int W, const int H ) {
if ( !n ) return 0;
int mid = H >> 1, cnt = 0, ret = 0;
for ( ; !stku.empty (); stku.pop () );
for ( ; !stkd.empty (); stkd.pop () );
segt.clear ( 1, 1, n );
stku.push ( 0 ), stkd.push ( 0 );
for ( int i = 1; i <= n; ) {
x[++ cnt] = p[i].x;
up[cnt] = H - mid, dn[cnt] = mid;
for ( ; i <= n && p[i].x == x[cnt]; ++ i ) {
if ( p[i].y >= mid ) up[cnt] = min_ ( up[cnt], p[i].y - mid );
if ( p[i].y <= mid ) dn[cnt] = min_ ( dn[cnt], mid - p[i].y );
}
int las;
while ( up[las = stku.top ()] > up[cnt] ) {
stku.pop ();
segt.update ( 1, 1, n, stku.top () + 1, las, up[cnt] - up[las] );
}
stku.push ( cnt );
while ( dn[las = stkd.top ()] > dn[cnt] ) {
stkd.pop ();
segt.update ( 1, 1, n, stkd.top () + 1, las, dn[cnt] - dn[las] );
}
stkd.push ( cnt );
segt.update ( 1, 1, n, cnt, cnt, W - x[cnt - 1] + up[cnt] + dn[cnt] );
ret = max_ ( ret, segt.query ( 1, 1, n, 1, cnt ) - W + p[i].x );
}
return ret;
} int main () {
W = rint (), H = rint (), n = rint ();
for ( int i = 1; i <= n; ++ i ) {
p[i].x = rint (), p[i].y = rint ();
if ( !p[i].x || p[i].x == W || !p[i].y || p[i].y == H ) -- i, -- n;
}
int ans = 0;
std::sort ( p + 1, p + n + 1 ), p[n + 1].x = W;
for ( int i = 1; i <= n + 1; ++ i ) {
ans = max_ ( ans, H + p[i].x - p[i - 1].x );
}
ans = max_ ( ans, solve ( n, W, H ) );
for ( int i = 1; i <= n; ++ i ) p[i].x ^= p[i].y ^= p[i].x ^= p[i].y;
std::sort ( p + 1, p + n + 1 ), p[n + 1].x = H;
for ( int i = 1; i <= n + 1; ++ i ) {
ans = max_ ( ans, W + p[i].x - p[i - 1].x );
}
ans = max_ ( ans, solve ( n, H, W ) );
printf ( "%d\n", ans << 1 );
return 0;
}

Solution -「ARC 063D」「AT 2149」Snuke's Coloring 2的更多相关文章

  1. Solution Set -「ARC 107」

    「ARC 107A」Simple Math   Link.   答案为: \[\frac{a(a+1)\cdot b(b+1)\cdot c(c+1)}{8} \] 「ARC 107B」Quadrup ...

  2. 「ARC 139F」Many Xor Optimization Problems【线性做法,踩标】

    「ARC 139F」Many Xor Optimization Problems 对于一个长为 \(n\) 的序列 \(a\),我们记 \(f(a)\) 表示从 \(a\) 中选取若干数,可以得到的最 ...

  3. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  4. 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇

    http://www.4gamer.net/games/216/G021678/20140714079/     连载第2回的本回,  Arc System Works开发的格斗游戏「GUILTY G ...

  5. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  6. Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory

    Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...

  7. SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法

    用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...

  8. 「Windows MFC 」「Edit Control」 控件

    「Windows MFC 」「Edit Control」 控件

  9. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

随机推荐

  1. react中antd+css Module一起使用

    antd 和 css modules 不能混用,针对antd的css 单独写一条loader的规则,不开启 css modules. 使用 exclude 和 include 配置参考(https:/ ...

  2. 通过js触发launch事件获取页面信息

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6814776265602499080/ 承接上一篇文档<页面Cookie的JS文件编写> 思路 继续之前 ...

  3. 使用Python 爬取 京东 ,淘宝。 商品详情页的数据。(避开了反爬虫机制)

    以下是爬取京东商品详情的Python3代码,以excel存放链接的方式批量爬取.excel如下 代码如下 from selenium import webdriver from lxml import ...

  4. Jarvis OJ--PHPINFO

    一道浙大的题目 题目地址:http://web.jarvisoj.com:32784 拿到这道题目, 是一道反序列化的题目,题目源码很简单,当创建OowoO()这个类的对象时,会自动调用__const ...

  5. PHP代码审计之create_function()函数

    0x00 create_function()简介 适用范围:PHP 4> = 4.0.1,PHP 5,PHP 7 功能:根据传递的参数创建匿名函数,并为其返回唯一名称. 语法: 1 create ...

  6. [.Net]使用ABP 数据库迁移migration遇到的坑及解决方案

    ​ 问题:在使用Update-Database时,突然出现"数据库中已存在名为 'XXX' 的对象". 检查发现__EFMigrationsHistory表中的MigrationI ...

  7. IPOPT安装

    1.安装工具coinbrew 打开网页,找到以下网址 将网站中的内容全部复制到自己创建的coinbrew文件中,并且赋予权限 chmod u+x coinbrew 或者执行 git clone htt ...

  8. Python 为什么不设计 do-while 循环结构?

    在某些编程语言中,例如 C/C++.C#.PHP.Java.JavaScript 等等,do-while 是一种基本的循环结构. 它的核心语义是:先执行一遍循环体代码,然后执行一遍条件语句,若条件语句 ...

  9. [C语言基础] 数组与指针之间的引用

    通过指针引用数组,通过数组引用指针,你搞明白了么?通过下面3种情形来了解一下数组和指针 Case 1. unsigned char arry[10]; unsigned char *ptr; unsi ...

  10. 关于网页中鼠标动作 onfocus onblur focus()

    其中: onFocus事件就是当光标落在文本框中时发生的事件. onBlur事件是光标失去焦点时发生的事件. 例如: <textarea onfocus="if(hello') {va ...