MXNet源码分析 | Gluon接口分布式训练流程
本文主要基于MXNet1.6.0版本,对Gluon接口的分布式训练过程进行简要分析。
众所周知,KVStore负责MXNet分布式训练过程中参数的同步,那么它究竟是如何应用在训练中的呢?下面我们将从Gluon.Trainer这个接口入手,逐步分析分布式训练的梯度交换以及参数同步过程。下面这段代码摘自python/mxnet/gluno/trainer.py文件,相较于源代码删除了一些多余的信息(如某些判断、注释等),以便让我们更好地专注于通信过程。
代码中的step函数是进行梯度交换以及参数更新的主体,它首先调用_init_kvstore去初始化kvstore,然后调用_allreduce_grads进行梯度传输,最后调用_update实现参数更新。
class Trainer(object):
def step(self, batch_size, ignore_stale_grad=False):
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
self._allreduce_grads()
self._update(ignore_stale_grad)
首先,_init_kvstore这个函数会通过用户指定的参数来调用model.py中的_create_kvstore来初始化kvstore以及update_kv_store这两个变量。其中kvstore是KVStore类的一个实例化对象,而update_on_kvstore是一个布尔型变量,用来判断是否在ps端更新参数。换句话说,如果该变量为True,那么模型参数的更新发生在ps端;否则,模型参数的更新发生在worker端,ps端只做梯度的聚合操作(这种情况下,paramerter server是不是就变成了gradient server?)。然而,只有在同步训练模式下,我们才能设置update_on_kvstore=False,异步训练并不支持在worker端更新参数。在update_kv_store=True的情况下,我们需要告诉ps端训练过程中使用的优化器是什么,因此要调用kvstore.set_optimizer把优化器从worker端传给ps端。
from ..model import _create_kvstore
class Trainer(object):
def _init_kvstore(self):
"""Create kvstore."""
config = self._kvstore_params
arg_arrays = {param.name: param.data(self._contexts[0]) for param in self._params}
kvstore, update_on_kvstore = _create_kvstore(config['kvstore'], len(self._contexts),
arg_arrays)
self._distributed = 'dist' in kvstore.type if kvstore else False
if self._distributed and 'async' in kvstore.type:
update_on_kvstore = True
# raise err if user provides unsupported configs
if config['update_on_kvstore'] is False:
raise ValueError("Please set update_on_kvstore=True "
"when training in async mode.")
if config['update_on_kvstore'] is not None:
update_on_kvstore = config['update_on_kvstore'
if kvstore:
if update_on_kvstore:
# optimizer preferably needs to be set before init for multiprecision
kvstore.set_optimizer(self._optimizer)
self._kvstore = kvstore
self._update_on_kvstore = update_on_kvstore
else:
self._kvstore = None
self._update_on_kvstore = None
self._kv_initialized = True
完成kvstore的初始化后,gluon.Trainer会调用_allreduce_grads来实现梯度的交换。欸,前面不是说MXNet是参数服务器架构吗,为啥为扯到Allreduce上呢?考虑update_on_kvstore=False的情况,最开始每个worker上都只有自己的本地梯度,把梯度push到ps并进行聚合后,每个worker从ps上pull回来的都是相同的、聚合后的梯度。整个过程中的push和pull操作,是不是就很像Reduce和Broadcast(worker上的梯度“Reduce”到ps上,然后ps端“Broadcast”聚合结果给各个worker)?观察_allreduce_grads的实现,可以发现,无论update_on_kvstore的值是什么,gluno.Trainer都会把梯度从worker端push到ps端,只不过当update_on_kvstore=True时,gluon.Trainer把梯度从worker上push到ps后就完事儿了;而当updata_on_kvstore=False时,gluon.Trainer还会从ps端把梯度的聚合结果pull回来,以便进行本地的参数更新。
class Trainer(object):
def _allreduce_grads(self):
if self._kvstore:
for i, param in enumerate(self._params):
if param.grad_req != 'null':
self._kvstore.push(i, param.list_grad(), priority=-i)
if not self._update_on_kvstore:
self._kvstore.pull(i, param.list_grad(), priority=-i,
ignore_sparse=self._distributed)
gluon.Trainer._update函数会根据update_on_kvstore的值进行相应的参数拉取以及更新操作。在单机训练(kvstore is None)或者分布式训练的本地更新模式(update_on_kvstore=True)下,gluon.Trainer会使用用户设定的优化器在本地更新参数,以进行下一步的训练。在分布式训练的情况下,当我们设置update_on_kvstore=True时,模型参数会在ps端进行更新,所以在该函数只需要将模型参数从ps端pull到本地即可。
class Trainer(object):
def _update(self, ignore_stale_grad=False):
updates = [[] for _ in self._updaters]
for i, param in enumerate(self._params):
if self._kvstore and self._update_on_kvstore:
if param._stype == 'default':
# 'row_sparse' parameters are not pulled immediately - they're pulled
# in `Block.forward`
self._kvstore.pull(i, param.list_data(), priority=-i)
continue
for upd, arr, grad in zip(updates, param.list_data(), param.list_grad()):
if not ignore_stale_grad or arr._fresh_grad:
upd.append((i, grad, arr))
arr._fresh_grad = False
if not (self._kvstore and self._update_on_kvstore):
for updater, upd in zip(self._updaters, updates):
if upd:
i, w, g = zip(*upd)
updater(i, w, g)
到这里,我们基本上就把python端的kvstore调用流程讲完了。
MXNet源码分析 | Gluon接口分布式训练流程的更多相关文章
- [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架
[源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 目录 [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 0x00 摘要 0x01 架构图 ...
- [源码解析] 深度学习分布式训练框架 horovod (8) --- on spark
[源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 0x00 摘要 0 ...
- [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入
[源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 目录 [源码解析] 深度学习分布式训练框架 horovod (2) --- 从使用者角度切入 0x00 摘要 0 ...
- [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver
[源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & Driver 目录 [源码解析] 深度学习分布式训练框架 horovod (4) --- 网络基础 & ...
- [源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么
[源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun背后做了什么 目录 [源码解析] 深度学习分布式训练框架 horovod (3) --- Horovodrun ...
- [源码解析] 深度学习分布式训练框架 horovod (13) --- 弹性训练之 Driver
[源码解析] 深度学习分布式训练框架 horovod (13) --- 弹性训练之 Driver 目录 [源码解析] 深度学习分布式训练框架 horovod (13) --- 弹性训练之 Driver ...
- [源码解析] 深度学习分布式训练框架 horovod (14) --- 弹性训练发现节点 & State
[源码解析] 深度学习分布式训练框架 horovod (14) --- 弹性训练发现节点 & State 目录 [源码解析] 深度学习分布式训练框架 horovod (14) --- 弹性训练 ...
- [源码解析] 深度学习分布式训练框架 horovod (15) --- 广播 & 通知
[源码解析] 深度学习分布式训练框架 horovod (15) --- 广播 & 通知 目录 [源码解析] 深度学习分布式训练框架 horovod (15) --- 广播 & 通知 0 ...
- [源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期
[源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Worker生命周期 目录 [源码解析] 深度学习分布式训练框架 horovod (16) --- 弹性训练之Work ...
随机推荐
- 查询 MySQL 字段注释的 5 种方法!
很多场景下,我们需要查看 MySQL 中表注释,或者是某张表下所有字段的注释,所以本文就来盘点和对比一下查询注释的几种方式. 创建测试数据库 开始之前咱们先创建一个数据库,以备下面演示使用. -- 如 ...
- leetcode刷题目录
leetcode刷题目录 1. 两数之和 2. 两数相加 3. 无重复字符的最长子串 4. 寻找两个有序数组的中位数 5. 最长回文子串 6. Z 字形变换 7. 整数反转 8. 字符串转换整数 (a ...
- go语言 strconv.ParseInt 的实现分析
字符串与数值之间进行转换是一个高频操作,在go语言中,SDK提供 strconv.ParseInt 将字符串转换为数值,strconv.FormatInt 可以将数值转换为字符串. 1.首先看下 st ...
- 【解决了一个小问题】golang中引用一个路径较长的库,导致goland中出现"module contains a go.mod file, so major version must be compatible: should be v0 or v1, not v2"
在项目中的go.mod文件中有这样一句: require ( github.com/xxx-devops/xx1/sdk/go v2.2.3 ) 项目的编译没有问题,但是goland中出现如下提示: ...
- 【体验】在Adobe After Effects CC 2018中使用脚本创建窗口
1.主界面 2.脚本编辑器主界面 3.对象浏览器 在脚本编辑器中按F1 4.写一段 ScriptUI var win = new Window('window', 'my win', [100, 10 ...
- 如何理解python中的cmp_to_key()函数
cmp_to_key() 在functools包里的函数,将老式的比较函数(cmp function)转化为关键字函数(key function). 与接受key function的工具一同使用(如 ...
- 使用kubeadm搭建k8s集群
1.初始化集群信息 这里我才用了两台虚拟机来搭建集群,一个master,一个node 角色 IP地址 组件 master 192.168.126.137 docker, kubectl, kubead ...
- gin中使用路由组
package main import ( "github.com/gin-gonic/gin" ) func main() { router := gin.Default() / ...
- GoLang设计模式20 - 组合模式
定义 组合模式是一种结构型设计模式. 当我们想把一组对象当做一个整体来处理时就可以考虑使用组合模式. 组合模式被视为是接口型设计模式是因为它将一组对象组装为一个树状结构.这个树状结构中的每个独立组件都 ...
- ansible roles实践——安装java
[root@master] /etc/ansible$ cat roles/java/tasks/main.yml ---- name: unzip jdk unarchive: src=jdk-8u ...