Solution -「HDU 6643」Ridiculous Netizens
\(\mathcal{Description}\)
Link.
给定一棵含有 \(n\) 个结点的树,点 \(u\) 有点权 \(w_u\),求树上非空连通块的数量,使得连通块内点权积 \(\le m\)。
\(n\le2\times10^3\),\(m\le10^6\),\(w_u\in[1,m]\),数据组数 \(T\le10\)。
\(\mathcal{Solution}\)
很明显是点分,每次考虑跨当前分治重心 \(r\) 的所有连通块对答案的贡献。问题变为:求树上以 \(r\) 为根的满足条件的连通块数量。
一个简单的想法是以子树为子问题树上 DP,但是点权积的状态空间与子树大小完全无关,子树与子树的合并反而更加浪费时间,这提示我们,应该设计一种仅有单点更新的 DP 状态——以 DFN 为子问题 DP。
另一方面,由于运算全部是乘法,可以考虑整除分块的储存方式压缩状态树。令 \(f(u,i)\) 表示当 DFS 进行到某一时刻时,以 \(u\) 子树内已经被搜过的点为最大 DFN 点的连通块中,点权积在整除分块后被映射到 \(i\) 的方案数。进入 \(u\) 子树时用 \(u\) 的父亲更新 \(f(u)\),退出 \(u\) 子树时将 \(f(u)\) 上传给 \(u\) 的父亲。设树的大小为 \(s\),DP 的复杂度为 \(\mathcal O(s\sqrt m)\)。
最终,算法复杂度为 \(\mathcal O(Tn\sqrt m\log n)\)。
\(\mathcal{Code}\)
/*+Rainybunny+*/
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l, rep##i = r; i <= rep##i; ++i)
#define per(i, r, l) for (int i = r, per##i = l; i >= per##i; --i)
typedef long long LL;
const int MAXN = 2e3, MOD = 1e9 + 7, THRES = 1e3;
int n, m, thres, ecnt, val[MAXN + 5], head[MAXN + 5];
int siz[MAXN + 5], wgt[MAXN + 5], ans;
int f[MAXN + 5][THRES * 2 + 5], g[MAXN + 5][THRES * 2 + 5];
struct Edge { int to, nxt; } graph[MAXN * 2 + 5];
bool vis[MAXN + 5];
inline void chkmax(int& u, const int v) { u < v && (u = v); }
inline int imin(const int u, const int v) { return u < v ? u : v; }
inline void addeq(int& u, const int v) { (u += v) >= MOD && (u -= MOD); }
inline void link(const int u, const int v) {
graph[++ecnt] = { v, head[u] }, head[u] = ecnt;
graph[++ecnt] = { u, head[v] }, head[v] = ecnt;
}
inline void findG(const int u, const int fa, const int all, int& rt) {
siz[u] = 1, wgt[u] = 0;
for (int i = head[u], v; i; i = graph[i].nxt) {
if (!vis[v = graph[i].to] && v != fa) {
findG(v, u, all, rt), siz[u] += siz[v];
chkmax(wgt[u], siz[v]);
}
}
chkmax(wgt[u], all - siz[u]);
if (!rt || wgt[rt] > wgt[u]) rt = u;
}
inline void getDP(const int u, const int fa) {
int *fcur = f[u], *ffa = f[fa];
rep (i, 0, thres << 1) fcur[i] = 0;
if (!fa) fcur[val[u] <= thres ? val[u] : thres + m / val[u]] = 1;
else {
rep (i, 0, imin(thres, m / val[u])) {
int t = i * val[u];
addeq(fcur[t <= thres ? t : thres + m / t], ffa[i]);
}
rep (i, val[u], thres) {
addeq(fcur[thres + i / val[u]], ffa[thres + i]);
}
}
for (int i = head[u], v; i; i = graph[i].nxt) {
if (!vis[v = graph[i].to] && v != fa) {
getDP(v, u);
}
}
if (fa) rep (i, 0, thres << 1) addeq(ffa[i], fcur[i]);
}
inline void solve(const int u) {
// printf("!%d\n", u);
vis[u] = true, getDP(u, 0);
rep (i, 0, thres << 1) addeq(ans, f[u][i]);
for (int i = head[u], v, rt; i; i = graph[i].nxt) {
if (!vis[v = graph[i].to]) {
findG(v, 0, siz[v], rt = 0), solve(rt);
}
}
}
inline void allClear() {
ans = ecnt = 0;
rep (i, 1, n) head[i] = vis[i] = 0;
}
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d %d", &n, &m), thres = int(sqrt(1. * m));
allClear();
rep (i, 1, n) scanf("%d", &val[i]);
rep (i, 2, n) { int u, v; scanf("%d %d", &u, &v), link(u, v); }
int rt = 0; findG(1, 0, n, rt);
solve(rt), printf("%d\n", ans);
}
return 0;
}
Solution -「HDU 6643」Ridiculous Netizens的更多相关文章
- Solution -「HDU 6875」Yajilin
\(\mathcal{Description}\) Link.(HDU 裂开了先放个私链 awa.) 在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...
- Solution -「HDU 5498」Tree
\(\mathcal{Description}\) link. 给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...
- Solution -「HDU 1788」CRT again
\(\mathcal{Description}\) Link. 解同余方程组: \[x\equiv m_i-a\pmod{m_i} \] 其中 \(i=1,2,\dots,n\). \ ...
- Solution -「HDU #6566」The Hanged Man
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...
- [HDU多校]Ridiculous Netizens
[HDU多校]Ridiculous Netizens 点分治 分成两个部分:对某一点P,连通块经过P或不经过P. 经过P采用树形依赖背包 不经过P的部分递归计算 树型依赖背包 v点必须由其父亲u点转移 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「HDU」Professor Ben
Description 有 \(Q\) 个询问.每次给定一个正整数 \(n\),求它的所有因数的质因数个数的和. Solution 就讲中间的一个 Trick. 我们定义正整数 \(x\) 有 \(f ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
随机推荐
- idea 开启 tomcat 热部署 的 具体流程 和 使用方式
1前言 一直以来,使用idea做web开发修改html.jsp.js文件后,必须手动重新部署tomcat,最少都有等个6 -10 秒, 甚至有时候还提示找不到某个编译文件报错,重新编译整个项目,那得等 ...
- vert.x框架与tomcat的关系
1.前言 大学4年,老师唯一让我们学习的web服务器是tomcat,配置方式是先从官网下载阿帕奇的tomcat文件,然后在开发平台导入,然后再配置web.xml等文件, 是一个可同步可异步请求的服务器 ...
- linux VI命令快捷键
ctrl+f 下一页 ctrl+b 上一页 ctrl+u 上半页 ctrl+d 下半页 数字+空格键 根据当前光标移动多少个字母 0键 光标移动到第一个字母,是当前行的 $键 光标移动到最后一个字母 ...
- Servlet简单实现开发部署过程
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6512008683445027331/ 主要是从下面三个步骤实现我们的预期: (1)构建开发环境: (2)开发Ser ...
- 注意,你所做的 A/B 实验,可能是错的!
对于 A/B 实验原理认知的缺失,致使许多企业在业务增长的道路上始终在操作一批"错误的 A/B 实验".这些实验并不能指导产品的优化和迭代,甚至有可能与我们的初衷背道而驰,导致&q ...
- 函数实现将 DataFrame 数据直接划分为测试集训练集
虽然 Scikit-Learn 有可以划分数据集的函数 train_test_split ,但在有些特殊情况我们只希望它将 DataFrame 数据直接划分为 train, test 而不是像 tr ...
- F5 BIG-IP 远程代码执行漏洞环境搭建
最近F5设备里的远程代码执行漏洞可谓是火爆,漏洞评分10分,所以,我也想搭建下环境复现一下该漏洞 漏洞详情 F5 BIG-IP 是美国F5公司一款集成流量管理.DNS.出入站规则.web应用防火墙.w ...
- SnackBar--FloatingActionButton--CoordinatorLayout
SnackBar snack:小吃,点心,快餐 btOpenSnackBar = (Button) findViewById(R.id.bt_openSnackBar); btOpenSnackBar ...
- day 18 C语言顺序结构基础定义1
(1).有以下程序: 程序运行后的输出结果是[B] (A).3,5,5,3 (B).3,5,3,5 (C).5,3,3,5 (D).5,3,5,3 这个题其实也可以弄成改错题,传到函数里面要对其值操作 ...
- python极简教程08:对象的方法
测试奇谭,BUG不见. 讲解之前,我先说说我的教程和网上其他教程的区别: 1 我分享的是我在工作中高频使用的场景,是精华内容: 2 我分享的是学习方法,亦或说,是指明你该学哪些.该重点掌握哪些内容: ...