\(\mathcal{Description}\)

  Link.

  给定一棵含 \(n\) 个结点的树,双向边权不相同。\(q\) 次询问,每次询问在树上标记 \(e\) 个点,标记的价值为所有趋向于某个标记点的有向边权值之和,求价值的最大值。

  \(q\le n\le2\times10^5\)。

\(\mathcal{Solution}\)

  \(e=1\text{ or }2\) 的时候可以直接换根求解。需要强调的是,当确定一个被标记的根时,其余标记点的贡献为根到这个标记点的有向路径长度(取并)。接下来引入一些结论。首先有:

  对于一棵根被钦定标记的树(\(e=1\)),当 \(e=k<n\) 时,一定能通过标记深度最深的结点使得其成为 \(e=k\) 时的最优解。

  不难意会。(

  由此可以推出一个关键的结论:

  对于 \(k>2\),\(e=k\) 时的最优解必然通过在某个 \(e=k-1\) 时的最优解的基础上新标记一个点得到。

  记 \(e=k\) 时某个最优解标记点集合为 \(S\),\(e=k+1\) 时任一最优解的标记点集合为 \(T\),考虑反证,若不存在 \(S\sub T\):

  • 若 \(S\cap T\neq\varnothing\),取一个 \(r\in S\cap T\),标记并作为树根。由上一个结论,矛盾。
  • 若 \(S\cap T=\varnothing\),考虑把 \(T\) 中的一个结点丢到 \(S\) 中,此时 \(S\) 不会比 \(T\) 劣。

  所以,以 \(e=2\) 时的一个标记点为根,令每片叶子的权值为其保持作为子树最深点,向上能爬的距离。排序取前 \(k\) 大之和加上一些常数就是 \(e=k\) 的答案。复杂度 \(\mathcal O(n\log n)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <algorithm> #define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) typedef long long LL;
typedef std::pair<int, LL> PIL; inline int rint() {
int x = 0, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() );
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} inline LL lmax( const LL a, const LL b ) { return a < b ? b : a; }
inline void chkmax( LL& a, const LL b ) { a < b && ( a = b, 0 ); } const int MAXN = 2e5;
const LL LINF = 1ll << 60;
int n, ecnt = 1, head[MAXN + 5], rt;
LL all, upsum, wgt[MAXN + 5];
struct Edge { int to, val, nxt; } graph[MAXN * 2 + 5]; inline void link( const int s, const int t, const int w ) {
graph[++ecnt] = { t, w, head[s] };
head[s] = ecnt;
} namespace Subtask23 { int siz[MAXN + 5], root;
LL sum[MAXN + 5], mx[MAXN + 5], sm[MAXN + 5], ans[2]; inline void init( const int u, const int fa ) {
siz[u] = 1, mx[u] = 0, sm[u] = -LINF;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa ) {
init( v, u );
siz[u] += siz[v], sum[u] += sum[v] + graph[i ^ 1].val;
LL d = mx[v] + graph[i].val;
if ( mx[u] < d ) sm[u] = mx[u], mx[u] = d;
else if ( sm[u] < d ) sm[u] = d;
}
}
} inline void solve( const int u, const int fa, const LL ups, const LL upx ) {
chkmax( ans[0], sum[u] + ups );
LL tmp = sum[u] + ups + lmax( upx, mx[u] );
if ( ans[1] < tmp ) root = u, ans[1] = tmp;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa ) {
int w1 = graph[i].val, w2 = graph[i ^ 1].val;
LL ns = ups + sum[u] - sum[v] - w2 + w1;
LL nx = lmax( upx, mx[v] + w1 < mx[u] ? mx[u] : sm[u] ) + w2;
solve( v, u, ns, nx );
}
}
} inline void main() {
init( 1, 0 );
solve( 1, 0, 0, 0 );
} } // namespace Subtask23. inline PIL init( const int u, const int fa ) {
PIL ret( u, 0 );
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa ) {
PIL tmp( init( v, u ) );
upsum += graph[i ^ 1].val;
wgt[tmp.first] += graph[i].val;
if ( tmp.second + graph[i].val > ret.second ) {
ret = { tmp.first, tmp.second + graph[i].val };
}
}
}
return ret;
} int main() {
freopen( "city.in", "r", stdin );
freopen( "city.out", "w", stdout );
n = rint();
rep ( i, 2, n ) {
int u = rint(), v = rint(), a = rint(), b = rint();
all += a + b;
link( u, v, a ), link( v, u, b );
}
Subtask23::main();
rt = Subtask23::root;
init( rt, 0 );
// printf( "root is %d: ", rt );
// rep( i, 1, n ) printf( "%lld ", wgt[i] );
// puts( "" );
std::sort( wgt + 1, wgt + n + 1, []( const LL a, const LL b ) {
return a > b;
} );
rep( i, 1, n ) wgt[i] += wgt[i - 1];
for ( int q = rint(), e; q--; ) {
e = rint();
wint( all - ( e < 2 ? Subtask23::ans[0] :
upsum + wgt[e - 1] ) ), putchar( '\n' );
}
return 0;
}

Solution -「JOISC 2019」「LOJ #3036」指定城市的更多相关文章

  1. 【LOJ】#3036. 「JOISC 2019 Day3」指定城市

    LOJ#3036. 「JOISC 2019 Day3」指定城市 一个点的可以dp出来 两个点也可以dp出来 后面的就是在两个点的情况下选一条最长的链加进去,用线段树维护即可 #include < ...

  2. 【LOJ】#3034. 「JOISC 2019 Day2」两道料理

    LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...

  3. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  4. 【LOJ】#3033. 「JOISC 2019 Day2」两个天线

    LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...

  5. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  6. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  7. 「JOISC 2019 Day3」穿越时空 Bitaro

    「JOISC 2019 Day3」穿越时空 Bitaro 题解: ​ 不会处理时间流逝,我去看了一眼题解的图,最重要的转换就是把(X,Y)改成(X,Y-X)这样就不会斜着走了. ​ 问题变成二维平面上 ...

  8. @loj - 3039@ 「JOISC 2019 Day4」蛋糕拼接 3

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 今天是 IOI 酱的生日,所以她的哥哥 JOI 君给她预定了一个 ...

  9. 「JOISC 2019 Day4」蛋糕拼接 3

    loj 3039 NKOJ Description \(n\)个蛋糕,每个蛋糕有\(w_i,h_i\).选\(m\)个蛋糕满足\(\sum\limits_{j=1}^mw_{k_j}-\sum\lim ...

随机推荐

  1. 在实验中观察指针——C++ 函数参数的压栈顺序

    前言 好久没写东西了,突发奇想,写写函数参数的压栈顺序 先看看这个问题 https://q.cnblogs.com/q/137133/ 然后看我简化的代码,猜输出结果是多少? #include< ...

  2. TestNG中 ITestListener 的使用

    1.关于testng中ITestListener 的相关介绍文档,请参考: http://javadox.com/org.testng/testng/6.8.7/org/testng/ITestLis ...

  3. RocketMQ架构原理解析(四):消息生产端(Producer)

    RocketMQ架构原理解析(一):整体架构 RocketMQ架构原理解析(二):消息存储(CommitLog) RocketMQ架构原理解析(三):消息索引(ConsumeQueue & I ...

  4. 【Java】final

    final final可以用来修饰的结构:类.方法.变量 final 用来修饰一个类:此类不能被其他类所继承. 比如:String类.System类.StringBuffer类 final 用来修饰方 ...

  5. 论文解读GCN 1st《 Deep Embedding for CUnsupervisedlustering Analysis》

    论文信息 Tittle:<Spectral Networks and Locally Connected Networks on Graphs> Authors:Joan Bruna.Wo ...

  6. JUC之线程池基础与简单源码分析

    线程池 定义和方法 线程池的工作时控制运行的线程数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量,超出数量的线程排队等候,等待其他线程执行完成,再从队列中取出任 ...

  7. dubbo 实现简易分布式服务

    dubbo 实现简易分布式服务 服务器需要搭建zookeeper环境 zookeeper端口2181 还需要有java环境 1.需求 某个电商系统,订单服务需要调用用户服务获取某个用户的所有地址: 我 ...

  8. 记录未解决的问题:docker中无法启动mysqld

    首先在docker中安装mysql server的包: sudo yum install mysql sudo yum install mariadb-server mariadb /usr/libe ...

  9. Cesium入门11 - Interactivity - 交互性

    Cesium入门11 - Interactivity - 交互性 Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ ...

  10. Servlet Cookie的使用

    HTTP(超文本传输协议)是一个基于请求与响应模式的无状态协议.无状态主要指 2 点: 协议对于事务处理没有记忆能力,服务器不能自动维护用户的上下文信息,无法保存用户状态: 每次请求都是独立的,不会受 ...