Yolov3 的 OneFlow 实现
Yolov3 的 OneFlow 实现
1.简介
YOLO 系列的算法(经典的v1~v3),是单阶段目标检测网络的开山鼻祖,YOLO—You only look once,表明其单阶段的特征,正是由于网络简单,单阶段的效率较快,使其区别于 Faster-RCNN 为代表的两阶段目标检测器,从一开始推出至今,便以速度快和较高的准确率而风靡目标检测领域,受到广泛使用和好评。
而Yolov3是其中的经典和集大成者(当然官方最近也推出了 Yolov4 ),其以融合了残差网络的 Darknet-53 为骨干网络,融合了多尺度,3路输出的 feature map,上采样等特点,使其模型精度和对小目标检测能力都大为提升。

本文,提供了 Yolov3 的 OneFlow 版实现,和其他版本实现的区别在于,将输出特征的 nms 过程写进了 C++ 代码中,通过自定义 user op 的方式来调用,当然,也同时支持直接使用 python 代码处理 nms。
2.快速开始
开始前,确保已正确安装了oneflow,并且在python3环境下可以成功import oneflow。
- git clone 此仓库到本地
git clone --recursive https://github.com/Oneflow-Inc/oneflow_yolov3.git
2. 安装 python 依赖库
pip install -r requirements.txt
3. 在项目 root 目录下,执行:
./scripts/build.sh
执行此脚本,将 cpp 代码中自定义的 op 算子编译成可调用执行的 .so 文件,将在项目路径下看到:
- libdarknet.so
- liboneflow_yolov3.so
预训练模型
使用了 Yolov3 原作者提供的预训练模型—yolov3.weight ,经转换后生成了 OneFlow 格式的模型。下载预训练模型:of_model_yolov3.zip ,并将解压后的 of_model 文件夹放置在项目 root 目录下,即可使用。
3. 预测/推理
运行:
sh yolo_predict.sh
或者:
sh yolo_predict_python_data_preprocess.sh
运行脚本后,将在 data/result 下生成检测后带 bbox 标记框的图片:

参数说明 - --pretrained_model 预训练模型路径
- --label_path coco 类别标签路径(coco.name)
- --input_dir 待检测图片文件夹路径
- --output_dir 检测结构输出路径
- --image_paths 单个/多个待检测图片路径,如:
--image_paths 'data/images/000002.jpg' 'data/images/000004.jpg'
训练同样很简单,准备好数据集后,只需要执行:sh yolo_train.sh即可,数据集制作过程见下文【数据集制作】部分。
4. 数据集制作
Yolov3 支持任意目标检测数据集,下面以 COCO2014 制作过程为例,介绍训练/验证所需的数据集制作,其它数据集如 PASCAL VOC 或自定义数据集等,都可以采用相同格式。
资源文件
下载 COCO2014 训练集和验证集图片,将解压后的 train2014 和 val2014 放在 data/COCO/images 目录下
(如果本地已下载过 COCO2014 数据集,可以 ln 软链接 images 至本地 train2014 和 val2014 的父目录)
准备资源文件:labels,5k.part,trainvalno5k.part
wget -c https://pjreddie.com/media/files/coco/5k.part
wget -c https://pjreddie.com/media/files/coco/trainvalno5k.part
wget -c https://pjreddie.com/media/files/coco/labels.tgz
脚本
在 data/COCO 目录下执行脚本:
# get label file
tar xzf labels.tgz
# set up image list
paste <(awk "{print \"$PWD\"}" <5k.part) 5k.part | tr -d '\t' > 5k.txt
paste <(awk "{print \"$PWD\"}" <trainvalno5k.part) trainvalno5k.part | tr -d '\t' > trainvalno5k.txt
# copy label txt to image dir
find labels/train2014/ -name "*.txt" | xargs -i cp {} images/train2014/
find labels/val2014/ -name "*.txt" | xargs -i cp {} images/val2014/
执行脚本将自动解压缩 labels.tgz 文件,并在当前目录下生成 5k.txt 和 trainvalno5k.txt,然后将 labels/train2014 和 labels/val2014 的所有 label.txt 文件复制到对应的训练集和验证集文件夹中( 保证图片和 label 在同一目录 )。
至此,完成整个数据集的准备过程。
5.训练
修改 yolo_train.sh 脚本中的参数,令:--image_path_file="data/COCO/trainvalno5k.txt" 并执行:
sh yolo_train.sh
即可开始训练过程,更详细的参数介绍如下:
- --gpu_num_per_node 每台机器使用的gpu数量
- --batch_size 批大小
- --base_lr 初始学习率
- --classes 目标类别数量(COCO 80;VOC 20)
- --model_save_dir 模型存放文件夹路径
- --dataset_dir 训练/验证集文件夹路径
- --num_epoch 迭代总轮数
- --save_frequency 指定模型保存的epoch间隔
说明
目前如果调用 yolo_predict.sh 执行,数据预处理部分对 darknet 有依赖
其中:
predict decoder 中调用 load_image_color、letterbox_image 函数
train
decoder 中调用 load_data_detection 函数
主要涉及以下操作,在后续的版本中会使用 OneFlow
decoder ops 替换
- image read
- nhwc -> nchw
- image / 255
- bgr2rgb
- resize_image
- fill_image
- random_distort_image
- clip image
- random flip image and box
- randomize_boxes
- correct_boxes
Yolov3 的 OneFlow 实现的更多相关文章
- 项目版本与分支管理之阿里AoneFlow模式分析
前言 在我前期的项目管理的经验中,一个项目需要维护多个产品及多个版本,这给版本与分支的管理增加了难度.前期没有重视,使得分支太多太乱,版本也没记录好,引发了很多的问题.在多种分支与版本的管理模式下,最 ...
- 模型转换[yolov3模型在keras与darknet之间转换]
首先借助qqwweee/keras-yolo3中的convert.py和tensorrt例子yolov3_onnx,并重新编写了代码,实现将darknet格式的yolov3的yolov3.cfg和yo ...
- yolov3和darknet opencv版编译安装及基本测试
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 一.准备工作: 安装pkg-config:sudo apt-get install pkg-confi ...
- 基于YOLOv3和Qt5的车辆行人检测(C++版本)
概述 YOLOv3: 车辆行人检测算法 GitHub Qt5: 制作简单的GUI OpenCV:主要用于putText.drawRec等 Step YOLOv3检测结果 Fig 1. input im ...
- 利用YOLOV3训练自己的数据
写在前面:YOLOV3只有修改了源码才需要重新make,而且make之前要先make clean. 一.准备数据 在/darknet/VOCdevkit1下建立文件夹VOC2007. voc2007文 ...
- YOLOv3:训练自己的数据(附优化与问题总结)
环境说明 系统:ubuntu16.04 显卡:Tesla k80 12G显存 python环境: 2.7 && 3.6 前提条件:cuda9.0 cudnn7.0 opencv3.4. ...
- 第十一节,利用yolov3训练自己的数据集
1.环境配置 tensorflow1.12.0 Opencv3.4.2 keras pycharm 2.配置yolov3 下载yolov3代码:https://github.com/qqwweee/k ...
- AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...
- 目标检测网络之 YOLOv3
本文逐步介绍YOLO v1~v3的设计历程. YOLOv1基本思想 YOLO将输入图像分成SxS个格子,若某个物体 Ground truth 的中心位置的坐标落入到某个格子,那么这个格子就负责检测出这 ...
随机推荐
- 源码篇:ThreadLocal的奇思妙想(万字图文)
前言 ThreadLocal的文章在网上也有不少,但是看了一些后,理解起来总感觉有绕,而且看了ThreadLocal的源码,无论是线程隔离.类环形数组.弱引用结构等等,实在是太有意思了!我必须也要让大 ...
- Linux下性能监控、守护进程与计划任务管理
目录 一:监视系统进程(ps .top) 二:查看网络连接信息 (netstat) 三:文件进程.端口关联(lsof) 四:计划任务管理(at .crontab) at crontab 一:监视系统进 ...
- POJ3233不错的矩阵(矩阵套矩阵)
题意: 给一个n*n的矩阵A,然后求S=A + A^2 + A^3 + ..+ A^k. 思路: 矩阵快速幂,这个题目挺新颖的,以往的矩阵快速幂都是退出公式,然后构造矩阵,这 ...
- Day008 三种初始化及内存分析
三种初始化和内存分析 Java内存分析: 堆: 存放new的对象和数组. 可以被所有的线程共享,不会存放别的对象引用. 栈: 存放基本变量类型(会包含这个基本类型的具体数值). 引用对象的变量(会存放 ...
- 联想R720Y空间问题
由于之前Y空间在启动项中,所以将他关闭,这次想找到他却找不到 备注:因为在解决问题前,没有把图片保存下来,所以下面用一个颜色框挡住,表示之前的效果 第一个问题 在电脑上找到Y空间 百度上很多说在开始中 ...
- 【Mybtais】Mybatis 插件 Plugin开发(一)动态代理步步解析
需求: 对原有系统中的方法进行'拦截',在方法执行的前后添加新的处理逻辑. 分析: 不是办法的办法就是,对原有的每个方法进行修改,添加上新的逻辑:如果需要拦截的方法比较少,选择此方法到是会节省成本.但 ...
- Cannot load driver class: com.mysql.jdbc.Driver
mysql-connector-java提供了mysql驱动等类库,此处必须引入此依赖,否则将会提示: Cannot load driver class: com.mysql.jdbc.Driver等 ...
- 关于有符号数和无符号数的转换 - C/C++
转载自:http://www.94cto.com/index/Article/content/id/59973.html 1.引例: 今天在做了一道关于有符号数和无符号数相互转换及其左移/右移的问题, ...
- ALPHA任务拆解
项目 内容 这个作业属于哪个课程 BUAA2020软件工程 这个作业的要求在哪里 作业要求 我们在这个课程的目标是 学会团队合作,共同开发一个完整的项目 这个作业在哪个具体方面帮助我们实现目标 团队任 ...
- 啥?SynchronousQueue和钟点房一个道理
今天这篇文章,我们继续讲架构师大刘的故事. 大刘有段时间经常会给一些程序员讲课.这一方面是由于团队培训的需要,一方面也是大刘自身想搞搞凡尔赛,嘚瑟一下自身的实力. 大刘讲课是允许公司任何一个人进去听的 ...