ONNX 实时graph优化方法
ONNX 实时graph优化方法
ONNX实时提供了各种图形优化来提高模型性能。图优化本质上是图级别的转换,从小型图简化和节点消除,到更复杂的节点融合和布局优化。
图形优化根据其复杂性和功能分为几个类别(或级别)。可以在线或离线执行。在联机模式下,优化在执行推断之前完成,而在脱机模式下,实时将优化的图形保存到磁盘。ONNX实时提供Python、C++、C++和C API,启用不同的优化级别,并在脱机与在线模式之间进行选择。
下面将详细介绍优化级别、在线/离线模式以及控制它们的各种API。
图优化级别Graph Optimization Levels
图形优化分为三个级别:
•基本
•扩展
•布局优化
属于一个级别的优化,在应用前一级别的优化之后执行(例如,在应用基本优化之后,应用扩展优化)。
默认情况下启用所有优化。
Basic图优化 Basic Graph Optimizations
- 这些都是保留语义的图重写,去除了冗余节点和冗余计算。在图形分区之前运行,适用于所有执行提供程序。可用的基本图形优化如下:
•常量折叠:静态计算仅依赖常量初始值设定项的图形部分。这样就不需要在实时计算它们。
•冗余节点消除:在不改变图形结构的情况下删除所有冗余节点。目前支持以下此类优化:
• Identity Elimination
• Slice Elimination
• Unsqueeze Elimination
• Dropout Elimination
• Semantics-preserving node fusions
•语义保留节点融合:将多个节点融合/折叠为单个节点。例如,Conv Add fusion将Add操作符,折叠为Conv操作符的偏移。目前支持以下此类优化::
- Conv Add Fusion
- Conv Mul Fusion
- Conv BatchNorm Fusion
- Relu Clip Fusion
- Reshape Fusion
Extended图优化 Extended Graph Optimizations
这些优化包括复杂的节点融合。它们在图形分区之后运行,并且仅应用于分配给CPU或CUDA执行提供程序的节点。可用的扩展图优化如下所示:
|
Optimization |
Execution Provider |
Comment |
|
GEMM Activation Fusion |
cpu |
|
|
Matmul Add Fusion |
cpu |
|
|
Conv Activation Fusion |
cpu |
|
|
GELU Fusion |
cpu or cuda |
|
|
Layer Normalization Fusion |
cpu or cuda |
|
|
BERT Embedding Layer Fusion |
cpu or cuda |
Fuse BERT embedding layer, layer normalization and attention mask length |
|
Attention Fusion |
cpu or cuda |
Attention mask has approximation in cuda execution provider |
|
Skip Layer Normalization Fusion |
cpu or cuda |
Fuse bias of fully connected layer, skip connection and layer normalization |
|
Bias GELU Fusion |
cpu or cuda |
Fuse bias of fully connected layer and GELU activation |
|
GELU Approximation |
cuda |
Erf is approximated by a formula using tanh function |
为了优化BERT模型的推理性能,GELU逼近和cuda执行支持provider,注意融合中使用了近似。结果可能略有不同。根据评估,对准确度的影响可以忽略不计:F1 score for a BERT model on SQuAD v1.1 is almost same (87.05 vs 87.03)。
Layout优化 Layout Optimizations
这些优化更改了适用节点的数据布局,以实现更高的性能改进。在图形分区之后运行,并且仅应用于分配给CPU执行提供程序的节点。可用的布局优化如下:
- NCHWc Optimizer: Optimizes the graph by using NCHWc layout instead of NCHW layout.
在线/离线模式选择 Online/Offline Mode
所有优化都可以在线或离线执行。在联机模式下,在初始化推理会话时,还将在执行模型推理之前,应用所有启用的图优化。每次启动会话时,应用所有优化,都会增加模型启动时间的开销(特别是对于复杂模型),这在输出场景中非常关键。这就是离线模式可以带来很多好处的地方。在脱机模式下,在执行图形优化之后,ONNX实时将生成的模型序列化到磁盘。随后,当为该模型创建新的推理会话时,可以使用已经优化的模型,来减少启动时间。
注意:
•在脱机模式下运行时,确保使用与模型推理,将在其上运行的目标计算机,完全相同的选项(例如,执行提供程序、优化级别)和硬件(例如,不能在仅配备CPU的计算机上,运行为GPU执行提供程序预优化的模型)。
•启用布局优化时,脱机模式只能在保存脱机模型时在与环境兼容的硬件上使用。例如,如果模型为AVX2优化了布局,那么离线模型将需要支持AVX2的cpu。
使用说明 Usage
通用方法说明 General Note
Levels:
ONNX运行时定义GraphOptimizationLevel枚举,以确定将启用上述哪些优化级别。选择一个级别可以实现该级别的优化,也可以实现前面所有级别的优化。例如,启用扩展优化,也会启用基本优化。这些级别到枚举的映射如下:
- GraphOptimizationLevel::ORT_DISABLE_ALL ->
Disables all optimizations - GraphOptimizationLevel::ORT_ENABLE_BASIC -> Enables
basic optimizations - GraphOptimizationLevel::ORT_ENABLE_EXTENDED
-> Enables basic and extended optimizations - GraphOptimizationLevel::ORT_ENABLE_ALL ->
Enables all available optimizations including layout optimizations
Online/Offline Mode:
要将优化模型序列化到磁盘,请将SessionOptions选项optimized_model_path,设置为存储优化模型的所需路径。
Python API Usage
importonnxruntimeasrt
sess_options=rt.SessionOptions()
# Set graph optimization level
sess_options.graph_optimization_level=rt.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
# To enable model serialization after graph optimization set this
sess_options.optimized_model_filepath="<model_output_path\optimized_model.onnx>"
session=rt.InferenceSession("<model_path>",sess_options)
C API Example:
constOrtApi*Ort::g_api=OrtGetApi(ORT_API_VERSION);
OrtEnv*env;
g_ort->CreateEnv(ORT_LOGGING_LEVEL_WARNING,"test",&env);
OrtSessionOptions*session_options;
g_ort->CreateSessionOptions(&session_options)
// Set graph optimization level
g_ort->SetSessionGraphOptimizationLevel(session_options,ORT_ENABLE_EXTENDED);
// To enable model serialization after graph optimization set this
constwchar_t*optimized_model_path=L"optimized_model_path";
g_ort->SetOptimizedModelFilePath(session_options,optimized_model_path);
OrtSession*session;
constwchar_t*model_path=L"model_path";
g_ort->CreateSession(env,model_path,session_option,&session);
C# API Example:
SessionOptions so = new SessionOptions();
// Set graph optimization level
so.GraphOptimizationLevel = GraphOptimizationLevel.ORT_ENABLE_EXTENDED;
// To enable model serialization after graph optimization set this
so.OptimizedModelFilePath = "model_output_path\optimized_model.onnx"
var session = new InferenceSession(modelPath, so);
C++ API Example:
Ort::SessionOptions session_options;
// Set graph optimization level
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
// To enable model serialization after graph optimization set this
session_options.SetOptimizedModelFilePath("optimized_file_path");
auto session_ = Ort::Session(env, "model_file_path", session_options);
ONNX 实时graph优化方法的更多相关文章
- redmine在linux上的mysql性能优化方法与问题排查方案
iredmine的linux服务器mysql性能优化方法与问题排查方案 问题定位: 客户端工具: 1. 浏览器inspect-tool的network timing工具分析 2. 浏览 ...
- 基于TensorRT车辆实时推理优化
基于TensorRT车辆实时推理优化 Optimizing NVIDIA TensorRT Conversion for Real-time Inference on Autonomous Vehic ...
- GPU优化方法[转]
CUDA优化的最终目的是:在最短的时间内,在允许的误差范围内完成给定的计算任务.在这里,“最短的时间”是指整个程序运行的时间,更侧重于计算的吞吐量,而不是单个数据的延迟.在开始考虑使用GPU和CPU协 ...
- HBase性能优化方法总结(转)
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...
- 性能优化之永恒之道(实时sql优化vs业务字段冗余vs离线计算)
在项目中,随着时间的推移,数据量越来越大,程序的某些功能性能也可能会随之下降,那么此时我们不得不需要对之前的功能进行性能优化.如果优化方案不得当,或者说不优雅,那可能将对整个系统产生不可逆的严重影响. ...
- HBase性能优化方法总结(转)
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...
- HBase性能优化方法总结(二):写表操作
转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section2.html 本文主要是 ...
- HBase性能优化方法总结(三):读表操作
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第三部分内容:读表操作相关的优化方法 ...
- Deep Learning基础--参数优化方法
1. 深度学习流程简介 1)一次性设置(One time setup) -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...
随机推荐
- SSDT表概念详解
SSDT 的全称是 System Services Descriptor Table,系统服务描述符表. 这个表就是一个把 Ring3 的 Win32 API 和 Ring0 的内核 API 联系起来 ...
- hdu3018 一笔画问题
题意: 给你一幅画,这幅画由点和边构成,问你最少几笔能把这幅画画完. 思路: 这个题目的结论比较巧妙,首先我们考虑下,如果给的图是欧拉图,或者是条欧拉回路,那么我们一笔就搞定了, ...
- POJ1486模拟或者匈牙利变种
题意: 有n个矩形,每个矩形上的某个位置上都有一个点,但是由于矩形是透明的,当一些矩形重叠在一起的时候就很可能分不清哪个点是那个矩形的,给你n个矩形的坐标,还有n个点的坐标,然后让你找出所 ...
- C#-获取磁盘,cpu,内存信息
获取磁盘信息 zongdaxiao = GetHardDiskSpace("C") * 1.0 / 1024; user = GetHardDiskFreeSpace(" ...
- Supervisord远程命令执行漏洞(CVE-2017-11610)
目录 Supervisor 漏洞复现 修复建议 Supervisor Supervisor是使用Python 开发的进程管理程序,一般使用命令行进行管理,当然也能通过web接口图形化管理服务.在配置了 ...
- Http协议有什么特点,能说说这些特点体现在哪些方面吗?
Http协议有什么特点,能说说这些特点体现在哪些方面吗? Http协议是我们最常用的接口,那它有什么特点呢? 无连接 无状态 还有呢? 灵活,简单快速 还有它的这些特点体现在哪些方面?你也要能说一说. ...
- 快速上手NumPy
NumPy is the fundamental package for scientific computing in Python. NumPy是一个开源的Python科学计算库. 官网:ht ...
- (数据科学学习手札121)Python+Dash快速web应用开发——项目结构篇
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- C#类中方法的执行顺序
有些中级开发小伙伴还是搞不太明白在继承父类以及不同场景实例化的情况下,父类和子类的各种方法的执行顺序到底是什么,下面通过场景的举例来重新认识下方法的执行顺序: (下面内容涉及到了C#中的继承,构造函数 ...
- 适用于windows10 Linux子系统的安装管理配置 How To Management Windows Subsystem for Linux WSL
什么是WSL Windows Subsystem for Linux 简称WLS,适用于Linux的Windows子系统,可以直接在Windows上运行Linux环境(包括大部分命令行工具) Linu ...