比赛地址:https://codeforces.com/contest/1554

只有 ABCD 的题解,E 不会。

A

答案是 \(\max_i\{a_ia_{i+1}\}\)。证明:(反证)如果我们取 \(a_i,a_{i+1},a_{i+2}\) 作为答案,那么取这三个数中最大的两个数作为答案一定更优。

typedef long long ll;

const int N=3e5;

int n,a[N+10];

void mian(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
ll ans=0;
for(int i=1;i<n;i++)
ans=std::max(ans,1LL*a[i]*a[i+1]);
printf("%lld\n",ans);
}

B

当 \(i,j\) 很大时,\(i\cdot j\) 是 \(\mathcal O(n^2)\) 级别的,而 \(k\cdot (a_i\operatorname{OR}a_j)\) 是 \(\mathcal O(100n)\) 级别的,所以只枚举后面几项即可。

typedef long long ll;

const int N=1e5;

int n,k,a[N+10];

void mian(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
ll ans=-ll(1e18);
for(int i=std::max(1,n-140);i<=n;i++)
for(int j=i+1;j<=n;j++)
ans=std::max(ans,1LL*i*j-1LL*k*(a[i]|a[j]));
printf("%lld\n",ans);
}

C

结论:当 \(i\) 取遍 \(0\sim 2^k-1,k\in\mathbb N\) 中的所有数时,\(n\oplus i\) 的值一定是一个连续的区间。

所以我们遍历 \(m\) 在二进制下的每一位,如果第 \(i\) 位是 \(1\),那么我们就把 \(0\sim 2^i-1\) 所对应的连续区间搞出来,最后把这些区间合并即可。

代码非常难看:

void mian(){
int n,m;
scanf("%d%d",&n,&m);
std::pair<int,int> a[40];
for(int i=0;i<=35;i++)a[i].first=a[i].second=0x3f3f3f3f;
int ans=0,now=0; // now 表示只考虑第 i 位和比它高的位时 n xor m 的值
for(int i=30;i>=0;i--){
if((m>>i)&1)
a[i].first=now|(n&(1<<i)),a[i].second=now|(n&(1<<i))|(((1<<i)-1));
now|=(n&(1<<i))^(((m>>i)&1)<<i);
}
a[31].first=now,a[31].second=now;
std::sort(a,a+35);
if(a[0].first>0)puts("0");
else{
for(int i=1;i<=30;i++)
if(a[i-1].second!=a[i].first-1){
printf("%d\n",a[i-1].second+1);
break;
}
}
}

D

如果 \(n\) 是偶数,那么答案为:\(\underbrace{\texttt{aa}\cdots\texttt{a}}_{\frac n2-1\ \text{times}}\!\texttt{b}\underbrace{\texttt{aa}\cdots\texttt{a}}_{\frac n2\ \text{times}}\)。

如果 \(n\) 是奇数,那么答案为:\(\underbrace{\texttt{aa}\cdots\texttt{a}}_{\left\lfloor\frac n2\right\rfloor-1\ \text{times}}\!\!\!\texttt{bc}\underbrace{\texttt{aa}\cdots\texttt{a}}_{\left\lfloor\frac n2\right\rfloor\ \text{times}}\)。

void mian(){
int n;
scanf("%d",&n);
if(n==1)puts("a");
else if(n&1){
for(int i=1;i<=(n-2)/2;i++)
printf("a");
printf("bc");
for(int i=1;i<=(n-2)/2+1;i++)
printf("a");
puts("");
}
else{
for(int i=1;i<=(n-1)/2;i++)
printf("a");
printf("b");
for(int i=1;i<=n/2;i++)
printf("a");
puts("");
}
}

Codeforces Round #735 (Div. 2) 题解的更多相关文章

  1. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  2. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  3. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  4. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  5. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  6. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  7. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  8. Codeforces Round #160 (Div. 1) 题解【ABCD】

    Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...

  9. Codeforces Round #383 (Div. 2) 题解【ABCDE】

    Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...

随机推荐

  1. 【NX二次开发】Block UI 指定坐标系

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...

  2. 【NX二次开发】体素特征相关函数(块、柱、锥、球)

    NX Open允许用户创建和查询所有基本体素特征,通过API函数建立基本体素特征返回的是相应的特征标识,如果需要可以通过函数UG_MODL_ask_feat_body()获得特征对应的实体对象标识.基 ...

  3. React Hooks使用避坑指南

    函数组件比类组件更加方便实现业务逻辑代码的分离和组件的复用,函数组件也比类组件轻量,没有react hooks之前,函数组件是无法实现LocalState的,这导致有localstate状态的组件无法 ...

  4. noip模拟9[斐波那契·数颜色·分组](洛谷模拟测试)

    这次考试还是挺好的 毕竟第一题被我给A了,也怪这题太简单,规律一眼就看出来了,但是除了第一题,剩下的我只有30pts,还是菜 第二题不知道为啥我就直接干到树套树了,线段树套上一个权值线段树,然后我发现 ...

  5. golang 用defer 捕获error 需小心

    有时一个函数内需要根据最后是否出错,决定是否执行某个操作.这时候如果函数的分支又比较多,就会比较麻烦了. defer 处理这个情况刚好合适 func main() { var err error by ...

  6. Linux中mail的用法

    简介:mail命令是命令行的电子邮件发送和接收工具.操作的界面不像elm或pine那么容易使用,但功能非常完整Red Hat上sendmail服务一般是自动启动的.可以通过下面的命令查看sendmai ...

  7. Vue3全家桶升级指南一composition API

    1.setup() vue3中的composition API中最重要的就是setup方法了,相当于组件的入口,所有的composition API都必须放到setup()中的使用. setup是在组 ...

  8. CentOS-yum安装chrome+chromeDriver+xvfb

    安装chrome 创建yum源文件 $ vim /etc/yum.repos.d/google-chrome.repo [google-chrome] name=google-chrome baseu ...

  9. awk中printf的用法

    printf函数   打印输出时,可能需要指定字段间的空格数,从而把列排整齐.在print函数中使用制表符并不能保证得到想要的输出,因此,可以用printf函数来格式化特别的输出. printf函数返 ...

  10. XSS challenges 1-10

    学长发的xss靶场,刚好js学完了,上手整活. 这个提示说非常简单,直接插入就完事了 <script>alert(document.domain)</script> 第二关. ...