比赛地址:https://codeforces.com/contest/1554

只有 ABCD 的题解,E 不会。

A

答案是 \(\max_i\{a_ia_{i+1}\}\)。证明:(反证)如果我们取 \(a_i,a_{i+1},a_{i+2}\) 作为答案,那么取这三个数中最大的两个数作为答案一定更优。

typedef long long ll;

const int N=3e5;

int n,a[N+10];

void mian(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
ll ans=0;
for(int i=1;i<n;i++)
ans=std::max(ans,1LL*a[i]*a[i+1]);
printf("%lld\n",ans);
}

B

当 \(i,j\) 很大时,\(i\cdot j\) 是 \(\mathcal O(n^2)\) 级别的,而 \(k\cdot (a_i\operatorname{OR}a_j)\) 是 \(\mathcal O(100n)\) 级别的,所以只枚举后面几项即可。

typedef long long ll;

const int N=1e5;

int n,k,a[N+10];

void mian(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
ll ans=-ll(1e18);
for(int i=std::max(1,n-140);i<=n;i++)
for(int j=i+1;j<=n;j++)
ans=std::max(ans,1LL*i*j-1LL*k*(a[i]|a[j]));
printf("%lld\n",ans);
}

C

结论:当 \(i\) 取遍 \(0\sim 2^k-1,k\in\mathbb N\) 中的所有数时,\(n\oplus i\) 的值一定是一个连续的区间。

所以我们遍历 \(m\) 在二进制下的每一位,如果第 \(i\) 位是 \(1\),那么我们就把 \(0\sim 2^i-1\) 所对应的连续区间搞出来,最后把这些区间合并即可。

代码非常难看:

void mian(){
int n,m;
scanf("%d%d",&n,&m);
std::pair<int,int> a[40];
for(int i=0;i<=35;i++)a[i].first=a[i].second=0x3f3f3f3f;
int ans=0,now=0; // now 表示只考虑第 i 位和比它高的位时 n xor m 的值
for(int i=30;i>=0;i--){
if((m>>i)&1)
a[i].first=now|(n&(1<<i)),a[i].second=now|(n&(1<<i))|(((1<<i)-1));
now|=(n&(1<<i))^(((m>>i)&1)<<i);
}
a[31].first=now,a[31].second=now;
std::sort(a,a+35);
if(a[0].first>0)puts("0");
else{
for(int i=1;i<=30;i++)
if(a[i-1].second!=a[i].first-1){
printf("%d\n",a[i-1].second+1);
break;
}
}
}

D

如果 \(n\) 是偶数,那么答案为:\(\underbrace{\texttt{aa}\cdots\texttt{a}}_{\frac n2-1\ \text{times}}\!\texttt{b}\underbrace{\texttt{aa}\cdots\texttt{a}}_{\frac n2\ \text{times}}\)。

如果 \(n\) 是奇数,那么答案为:\(\underbrace{\texttt{aa}\cdots\texttt{a}}_{\left\lfloor\frac n2\right\rfloor-1\ \text{times}}\!\!\!\texttt{bc}\underbrace{\texttt{aa}\cdots\texttt{a}}_{\left\lfloor\frac n2\right\rfloor\ \text{times}}\)。

void mian(){
int n;
scanf("%d",&n);
if(n==1)puts("a");
else if(n&1){
for(int i=1;i<=(n-2)/2;i++)
printf("a");
printf("bc");
for(int i=1;i<=(n-2)/2+1;i++)
printf("a");
puts("");
}
else{
for(int i=1;i<=(n-1)/2;i++)
printf("a");
printf("b");
for(int i=1;i<=n/2;i++)
printf("a");
puts("");
}
}

Codeforces Round #735 (Div. 2) 题解的更多相关文章

  1. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  2. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  3. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  4. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  5. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  6. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  7. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  8. Codeforces Round #160 (Div. 1) 题解【ABCD】

    Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...

  9. Codeforces Round #383 (Div. 2) 题解【ABCDE】

    Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...

随机推荐

  1. Qt实现基于多线程的文件传输(服务端,客户端)

    1. 效果 先看看效果图 这是传输文件完成的界面 客户端 服务端 2. 知识准备 其实文件传输和聊天室十分相似,只不过一个传输的是文字,一个传输的是文件,而这方面的知识,我已经在前面的博客写过了,不了 ...

  2. vivo商城促销系统架构设计与实践-概览篇

    一.前言 随着商城业务渠道不断扩展,促销玩法不断增多,原商城v2.0架构已经无法满足不断增加的活动玩法,需要进行促销系统的独立建设,与商城解耦,提供纯粹的商城营销活动玩法支撑能力. 我们将分系列来介绍 ...

  3. 『动善时』JMeter基础 — 50、使用JMeter测试WebSocket接口

    目录 1.什么是WebSocket接口 2.为什么需要WebSocket 3.测试WebService接口前的准备 4.WebSocket Sampler组件界面详解 5.使用JMeter测试WebS ...

  4. 2、mysql编译安装

    2.1前言: 此文档介绍的是cmake编译安装的方式: 二进制的安装方式在linux运维_集群_01中有详细的安装说明(已经编译完成,进行初始操作即可) 初始化操作时需要对编译好的mysql进行一下备 ...

  5. 10、修改windows编码集

    10.1.查看Windows的字符集编码: 1.方法一: (1) 同时按住"windows"徽标键和"r"键,在弹出的"运行"框中输入&qu ...

  6. POJ 2506 Tiling dp+大数 水题

    大致题意:现有两种方块(1X2,2X2),方块数量无限制.问用这两种方块填满2Xn的矩阵的填法有多少种. 分析:通俗点说,找规律.专业化一点,动态规划. 状态d[i],表示宽度为i的填法个数. 状态转 ...

  7. java.util.Date 与 java.sql.Date

    java.sql.Date 继承 java.util.Date 区别: 1.java.sql.Date 一般用于数据库 2.java.sql.Date 没有时分秒,涉及时分秒的函数都会报异常(且这些方 ...

  8. springboot 使用yml配置文件自定义属性

    springboot 中在application.yml文件里自定义属性值,配合@Value注解可以在代码中直接取到相应的值,如在application.yml中添加 mqtt: serverURI: ...

  9. linux sort uniq命令详解

    sort 功能说明:将文本文件内容加以排序,sort可针对文本文件的内容,以行为单位来排序. sort [-bcdfimMnr][-o<输出文件>][-t<分隔字符>][+&l ...

  10. Swoole实现毫秒级定时任务

    项目开发中,如果有定时任务的业务要求,我们会使用linux的crontab来解决,但是它的最小粒度是分钟级别,如果要求粒度是秒级别的,甚至毫秒级别的,crontab就无法满足,值得庆幸的是swoole ...