DL服务器主机环境配置(ubuntu14.04+GTX1080+cuda8.0)解决桌面重复登录
DL服务器主机环境配置(ubuntu14.04+GTX1080+cuda8.0)解决桌面重复登录
前面部分是自己的记录,后面方案部分是成功安装驱动+桌面的正解
问题的开始在于:登录不了桌面,停留在重复输入密码界面
博文中分析的结论:
虚拟机中不能直接调用物理显卡进行 CUDA 编程;虚拟机中运行 CUDA 需要硬件和软件的配合才能使用,对于一般使用者可能暂时不太可能的。
参考博文:
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow
ubuntu14.04+cuda8.0(GTX1080)+caffe安装
Ctrl+alt+F1进入字符界面,关闭图形界面
sudo service lightdm stop //必须有,不然会安装失败
sudo /etc/init.d/lightdm stop //一样的命令
sudo chmod 755 NVIDIA-Linux-x86_64-367.27.run //获取权限
sudo ./NVIDIA-Linux-x86_64-367.27.run //安装驱动
Accept
Continue installation
安装完成之后
sudo service lightdm start
图形界面出现,然后关机,由让人重复输入密码,登录不了
博主说
$ sudo /etc/init.d/gdm stop
$ sudo nvidia-installer --update
$ sudo /etc/init.d/gdm start
升级到375版本, 还是没用,启动进入不了桌面,重复登录
Install driver 367
Uninstall previous nvidia drivers.
$ sudo apt-get purge nvidia-*
Stop light gdm (graphical interface)
$ sudo service lightgdm
Go to tty (CTRL+ALT+F1). Set your init state to 3 (text only mode). It is important to do this. Note these commands on a paper or something. I experienced sometimes the tty does not show with the newest driver. I just ssh to my PC as a way around.
$ sudo init 3
Log in to tty and cd to the directory where your have downloaded the driver.
$ sudo ./NVIDIA-Linux-x86_64-367.35.run
It will ask if you want to install 32-bit libraries, say no (assuming you do not have a 32-bit OS, hopefully. If you do have a 32-bit OS it is a good idea to upgrade…)
In a few minutes it is done….smooth. Reboot your PC
$ sudo reboot
update 之后还是不能进 图形界面
Uninstall previous nvidia drivers.
sudo apt-get purge nvidia-*
sudo apt-get autoremove
sudo apt-get --purge remove nvidia-*
remove 之后,
nvidia-smi
还是能看到gpu的。why?
卸载不了?
sudo apt-get install nvidia-prime
$ sudo /etc/init.d/lightdm stop
$ sudo nvidia-installer --update
$ sudo /etc/init.d/lightdm start
升级到375版本, 还是没用,启动进入不了桌面,重复登录
有人说,安装必须要在安装桌面前安装GTX 1080 driver,后面方案验证来看, 那个参数才是关键。
解决方法
利用sudo gedit /etc/modprobe.d/blacklist-nouveau.conf新建blacklist-nouveau.conf文件,输入命令
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off
保存并退出。这一步是为了禁掉Ubuntu自带开源驱动nouveau。之后sudo reboot重启系统。在终端执行命令
lsmod | grep nouveau
查看nouveau模块是否被加载。如果什么都没输出,则执行下一步。
根本问题在于 参数: --no-opengl-files
sudo /etc/init.d/lightdm stop
sudo ./NVIDIA-Linux-x86_64-375.20.run --no-opengl-files
sudo /etc/init.d/lightdm start
即可以正常登录界面了!!
在安装过程中的选项:
Accept
Continue installation
register the kernel moudle sources with DKMS?
NO
Would you like to run the nvidia-xconfig utility to automatically update your X Configuration file so set the NVIDIA X driver will be used when you restart X?
NO
Install 32-Bit compatibility libraries?参考
NO

cuda8.0安装
运行
sudo sh cuda_8.0.44_linux.run
选项如下所示:
Description
This package includes over 100+ CUDA examples that demonstrate
various CUDA programming principles, and efficient CUDA
implementation of algorithms in specific application domains.
The NVIDIA CUDA Samples License Agreement is available in
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?
(y)es/(n)o/(q)uit: n
Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/c302 ]:
Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
Installing the CUDA Samples in /home/c302 ...
Copying samples to /home/c302/NVIDIA_CUDA-8.0_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-8.0
Samples: Installed in /home/c302
Please make sure that
- PATH includes /usr/local/cuda-8.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver
Logfile is /tmp/cuda_install_9045.log
设置环境变量
export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
添加系统变量修改到系统文件
sudo vi /etc/profile
在最后添加上面两句,然后保存。使立即生效
sudo ldconfig //环境变量立即生效
验证 cuda
c302@c302-dl:~/Downloads$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Sun_Sep__4_22:14:01_CDT_2016
Cuda compilation tools, release 8.0, V8.0.44
测试cuda的samples
cd ‘/home/zhou/NVIDIA_CUDA-8.0_Samples’
make //这里需要点时间
最后显示:
make[1]: Leaving directory `/home/c302/NVIDIA_CUDA-8.0_Samples/7_CUDALibraries/MersenneTwisterGP11213'
Finished building CUDA samples
cd 0_Simple/matrixMul
运行测试如下:
c302@c302-dl:~/NVIDIA_CUDA-8.0_Samples/0_Simple/matrixMul$ ./matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GTX 1080" with compute capability 6.1
MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 1109.06 GFlop/s, Time= 0.118 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

下一篇将会是安装cuDNN、tensorflow等lib
DL服务器主机环境配置(ubuntu14.04+GTX1080+cuda8.0)解决桌面重复登录的更多相关文章
- caffe+GPU︱AWS.G2+Ubuntu14.04+GPU+CUDA8.0+cudnn8.0
国服亚马逊的GPU实例G2.2xlarge的python+caffe的安装过程,被虐- 一周才装出来- BVLC/caffe的在AWS安装的官方教程github: https://github.com ...
- ubuntu14.04安装CUDA8.0
ubuntu安装CUDA 因为深度学习需要用到CUDA,所以写篇博客,记录下自己安装CUDA 的过程. 1 安装前的检查 安装CUDA之前,首先要做一些事情,检查你的机器是否可以安装CUDA. 1.1 ...
- (转)深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0 发表于2016年07月15号由52nlp 接上文<深度学习主机攒机小记>,这台GTX10 ...
- 深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow
深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直 ...
- 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
不多说,直接上干货! 深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0
- 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow
接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡 ...
- 初用Linux, 安装Ubuntu16.04+NVIDIA387+CUDA8.0+cudnn5.1+TensorFlow1.0.1
因为最近Deep Learning十分热门, 装一下TensorFlow学习一下. 本文主要介绍安装流程, 将自己遇到的问题说明出来, 并记录自己如何处理, 原理方面并没有能力解释. 由于本人之前从来 ...
- Ubuntu16.04 + gtx1060 + cuda8.0 + cudnn5.1 + caffe + Theano + Tensorflow
参考 ubuntu16.04+gtx1060+cuda8.0+caffe安装.测试经历 ,细节处有差异. 首先说明,这是在台式机上的安装测试经历,首先安装的win10,然后安装ubuntu16.04双 ...
- ubuntu16.04安装cuda8.0试错锦集
ubuntu16.04安装cuda8.0试错锦集 参考文献: [http://www.jianshu.com/p/35c7fde85968] [http://blog.csdn.net/sinat_1 ...
随机推荐
- postman(二):使用postman发送get or post请求
总结一下如何使用postman发送get或post请求 请求 一.GET请求 通常用于请求服务器发送某个资源,请求的数据会附在URL之后,以?分割URL和传输数据,多个参数用&连接 1.请求方 ...
- B站(Bilibili) 视频的下载。
1) 第一种是众所周知的方法,在URL的 bilibili 前加个 i, 就可以有视频的mp4的地址,然后用下载器下载. 比如 想 下载 https://www.bilibili.com/video/ ...
- fastJson设置接口只接受json格式数据
spring-mvc/servlet.xml <mvc:annotation-driven> <mvc:message-converters register-defaults=&q ...
- arch Linux 安装完,无法通过 SSH 远程连接 root 用户问题
访问 arch Linux 主机的该文件 [root@eric-laptop ~]# vim /etc/ssh/sshd_config 对应注释部分后边补上下边三行: LoginGraceTime 1 ...
- 基于Xshell使用密钥方式连接远程主机
基于Xshell使用密钥方式连接远程主机 连接远程主机,就验证身份而言,一般有两种方式,一种是通过用户密码:另一种通过公钥的方式(Public Key). 图1 xshell支持验证登录用户的方式 下 ...
- 『Python』源码解析_源码文件介绍
本篇代码针对2.X版本,与3.X版本细节不尽相同,由于两者架构差别不大加之本人能力有限,所以就使用2.X体验python的底层原理了. 一.主要文件夹内容 Include :该目录下包含了Python ...
- Java基础恶补——内存泄露、内存溢出
http://blog.csdn.net/wisgood/article/details/16818243
- [lightoj P1306] Solutions to an Equation
[lightoj P1306] Solutions to an Equation You have to find the number of solutions of the following e ...
- less和sass的定义和区别
less是单独的一种文件,可以理解为css的升级版: sass是一个相对新的编程语言,为web前端开发而生,可以用它来定义一套新的语法规则和函数: 区别: ① 表现方式不同:less基于javas ...
- echarts和highcharts比较
echarts底层为canvas,highcharts底层为svg canvas特点: ①依赖分辨率 ②不支持事件处理器 ③弱的文本渲染能力 ④能够以.jpg..png格式保存结果图像 ⑤最适合图像密 ...