fig=plt.figure()
fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
plt.axes([0.025,0.025,0.95,0.95])#显示的范围
plt.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
plt.show()#显示图

fig=plt.figure()
ax=fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
ax.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
plt.show()#显示图

#scatter
fig=plt.figure()
fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
plt.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
#bar
fig.add_subplot(332)
n=10
X=np.arange(n)
Y1=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(X,+Y1,facecolor='#9999ff',edgecolor='red')
#+Y1表示把柱状图画在横轴上面;facecolor配置柱子颜色;edgecolor配置柱子边缘颜色
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='green')
#-Y2表示把柱状图画在横轴下面;
for x,y in zip(X,Y1):
plt.text(x+0.4, y+0.05, '%.2f'%y, ha='center', va='top')
#添加注释;x+0.4, y+0.05表示注释的位置;'%.2f'%y表示注释的格式;
#ha='center'注释的水平位置;va='bottom'注释在条的位置,top表示在条的里面,bottom表示在条的上面(外面)
for x,y in zip(X,Y2):
plt.text(x+0.4, -y-0.05, '%.2f'%y, ha='center', va='top')
plt.show()#显示图

#scatter
fig=plt.figure()
ax=fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
ax.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
#bar
ax=fig.add_subplot(332)####################################这里改了一下ax 和上面是一样的
n=10
X=np.arange(n)
Y1=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
ax.bar(X,+Y1,facecolor='#9999ff',edgecolor='red')
#+Y1表示把柱状图画在横轴上面;facecolor配置柱子颜色;edgecolor配置柱子边缘颜色
ax.bar(X,-Y2,facecolor='#ff9999',edgecolor='green')
#-Y2表示把柱状图画在横轴下面;
for x,y in zip(X,Y1):
plt.text(x+0.4, y+0.05, '%.2f'%y, ha='center', va='top')
#添加注释;x+0.4, y+0.05表示注释的位置;'%.2f'%y表示注释的格式;
#ha='center'注释的水平位置;va='bottom'注释在条的位置,top表示在条的里面,bottom表示在条的上面(外面)
for x,y in zip(X,Y2):
plt.text(x+0.4, -y-0.05, '%.2f'%y, ha='center', va='top')
plt.show()#显示图

matplotlib绘图2的更多相关文章

  1. matplotlib 绘图

    http://blog.csdn.net/jkhere/article/details/9324823 都打一遍 5 matplotlib-绘制精美的图表 matplotlib 是python最著名的 ...

  2. python实战学习之matplotlib绘图续

    学习完matplotlib绘图可以设置的属性,还需要学习一下除了折线图以外其他类型的图如直方图,条形图,散点图等,matplotlib还支持更多的图,具体细节可以参考官方文档:https://matp ...

  3. matplotlib绘图的基本操作

    转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...

  4. python中利用matplotlib绘图可视化知识归纳

    python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...

  5. matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)

    本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...

  6. python实战学习之matplotlib绘图

    matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...

  7. 【原】在Matplotlib绘图中添加Latex风格公式

    Matplotlib绘图的过程中,可以为各个轴的Label,图像的Title.Legend等元素添加Latex风格的公式. 只需要在Latex公式的文本前后各增加一个$符号,Matplotlib就可以 ...

  8. Matplotlib绘图双纵坐标轴设置及控制设置时间格式

    双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...

  9. ssh调用matplotlib绘图报错RuntimeError: Invalid DISPLAY variable

    1.问题:在本地用matplotlib绘图可以,但是在ssh远程绘图的时候会报错 RuntimeError: Invalid DISPLAY variable 2.原因:matplotlib的默认ba ...

  10. Matplotlib绘图及动画总结

    目录 Matplotlib绘图总结 绘图原理 block模式(python默认) interactive模式(ipython模式默认) 深入子图 子图表示 子图绘图 绘制动画 参考链接 Matplot ...

随机推荐

  1. 转载 AutoMapper在C#中的有趣应用 https://www.cnblogs.com/lvlinlv/p/7344916.html

    最近发现了一个比较有趣的东西 AutoMapper,主要将Model转换为DTO,DTO更注重数据,对领域对象进行合理封装,从而不会将领域对象的行为过分暴露给表现层. 先来看一点实例,两个类之间的映射 ...

  2. java-深克隆和浅克隆

    文章参考 https://www.cnblogs.com/acode/p/6306887.html 一.前提 1.使用clone()方法的类,必须实现Cloneable接口, 否则调用clone()方 ...

  3. 关于linux系统如何实现fork的研究(一)

    引言     fork函数是用于在linux系统中创建进程所使用,而最近看了看一个fork()调用是怎么从应用到glibc,最后到内核中实现的,这片文章就聊聊最近对这方面研究的收获吧.我们主要聊聊从g ...

  4. [05] Bean的作用域和生命周期

    1.Bean的作用域和初始化时间 之前我们稍微提到过,Spring中管理的Bean,默认都是单例模式,这意味着你多次获取某个对象,得到的都是相同的对象.单例作用域的显性写法是scope属性,如下,这和 ...

  5. 计算机网络什么是OSI7层模型、TCP/IP4层模型理解

    模型图解 应用层 就是最顶层的.通常指的应用程序初始走的协议比如有 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 主要对数据应用层的数据包进行加密 会话层 建立.管理. ...

  6. zabbix问题记录

    zabbix部署好,在使用一段时间后,出现了不少报错,在此简单做一记录.1)Zabbix监控界面报错Lack of free swap space on Zabbix server”解决公司线上部署的 ...

  7. sublime text3 安装package control 出现问题解决过程记录

    1.安装package control 失败 通过最简单的自动安装 package control 失败(详见package control官网). 报错展示: File "./python ...

  8. 路由嵌套 active

    http://www.jb51.net/article/102574.htm; https://segmentfault.com/q/1010000008950255 <el-menu :def ...

  9. M2阶段事后总结

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们的主要任务是将35w+个符合条件的网页,问答,文章放入数据库:爬取功能定义为以下几种:通用型爬取 ...

  10. 第六次Scrum meeting

    第六次Scrum  meeting 任务及完成度: 成员 12.21 12.22 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(98%) 任务1114-1:完成对网页数 ...