fig=plt.figure()
fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
plt.axes([0.025,0.025,0.95,0.95])#显示的范围
plt.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
plt.show()#显示图

fig=plt.figure()
ax=fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
ax.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
plt.show()#显示图

#scatter
fig=plt.figure()
fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
plt.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
#bar
fig.add_subplot(332)
n=10
X=np.arange(n)
Y1=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
plt.bar(X,+Y1,facecolor='#9999ff',edgecolor='red')
#+Y1表示把柱状图画在横轴上面;facecolor配置柱子颜色;edgecolor配置柱子边缘颜色
plt.bar(X,-Y2,facecolor='#ff9999',edgecolor='green')
#-Y2表示把柱状图画在横轴下面;
for x,y in zip(X,Y1):
plt.text(x+0.4, y+0.05, '%.2f'%y, ha='center', va='top')
#添加注释;x+0.4, y+0.05表示注释的位置;'%.2f'%y表示注释的格式;
#ha='center'注释的水平位置;va='bottom'注释在条的位置,top表示在条的里面,bottom表示在条的上面(外面)
for x,y in zip(X,Y2):
plt.text(x+0.4, -y-0.05, '%.2f'%y, ha='center', va='top')
plt.show()#显示图

#scatter
fig=plt.figure()
ax=fig.add_subplot(3,3,1)#3行3列 第一个图
n=128
X=np.random.normal(0,1,n)
Y=np.random.normal(0,1,n)
T=np.arctan2(Y,X)#T用来上色的
#plt.axes([0.025,0.025,0.95,0.95])#显示的范围
ax.scatter(X,Y,s=75,c=T,alpha=.5)#s表示点的大小,c表示颜色,用T的值来给c上色
plt.xlim(-1.5,1.5)
plt.xticks([])
plt.ylim(-1.5,1.5)
plt.yticks([])
plt.xlabel("X")
plt.ylabel("Y")
plt.title("scatter")
#bar
ax=fig.add_subplot(332)####################################这里改了一下ax 和上面是一样的
n=10
X=np.arange(n)
Y1=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
Y2=(1-X/float(n))*np.random.uniform(0.5,1.0,n)
ax.bar(X,+Y1,facecolor='#9999ff',edgecolor='red')
#+Y1表示把柱状图画在横轴上面;facecolor配置柱子颜色;edgecolor配置柱子边缘颜色
ax.bar(X,-Y2,facecolor='#ff9999',edgecolor='green')
#-Y2表示把柱状图画在横轴下面;
for x,y in zip(X,Y1):
plt.text(x+0.4, y+0.05, '%.2f'%y, ha='center', va='top')
#添加注释;x+0.4, y+0.05表示注释的位置;'%.2f'%y表示注释的格式;
#ha='center'注释的水平位置;va='bottom'注释在条的位置,top表示在条的里面,bottom表示在条的上面(外面)
for x,y in zip(X,Y2):
plt.text(x+0.4, -y-0.05, '%.2f'%y, ha='center', va='top')
plt.show()#显示图

matplotlib绘图2的更多相关文章

  1. matplotlib 绘图

    http://blog.csdn.net/jkhere/article/details/9324823 都打一遍 5 matplotlib-绘制精美的图表 matplotlib 是python最著名的 ...

  2. python实战学习之matplotlib绘图续

    学习完matplotlib绘图可以设置的属性,还需要学习一下除了折线图以外其他类型的图如直方图,条形图,散点图等,matplotlib还支持更多的图,具体细节可以参考官方文档:https://matp ...

  3. matplotlib绘图的基本操作

    转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...

  4. python中利用matplotlib绘图可视化知识归纳

    python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...

  5. matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)

    本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...

  6. python实战学习之matplotlib绘图

    matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...

  7. 【原】在Matplotlib绘图中添加Latex风格公式

    Matplotlib绘图的过程中,可以为各个轴的Label,图像的Title.Legend等元素添加Latex风格的公式. 只需要在Latex公式的文本前后各增加一个$符号,Matplotlib就可以 ...

  8. Matplotlib绘图双纵坐标轴设置及控制设置时间格式

    双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...

  9. ssh调用matplotlib绘图报错RuntimeError: Invalid DISPLAY variable

    1.问题:在本地用matplotlib绘图可以,但是在ssh远程绘图的时候会报错 RuntimeError: Invalid DISPLAY variable 2.原因:matplotlib的默认ba ...

  10. Matplotlib绘图及动画总结

    目录 Matplotlib绘图总结 绘图原理 block模式(python默认) interactive模式(ipython模式默认) 深入子图 子图表示 子图绘图 绘制动画 参考链接 Matplot ...

随机推荐

  1. <操作系统>内存管理

    单道程序设计:内存被划分为两部分:一部分供操作系统使用,另一部分供当前正在执行的程序使用. 多道程序设计:内存中进一步细分用户部分,以满足多个进程的要求. 内存管理的需求: 重定位:程序从磁盘换入内存 ...

  2. centos 6.X下建立arduino开发环境

    一.安装arduino IDE 1.下载linux下arduino IDE安装包,从网址:http://arduino.cc/en/Main/Software下载,如果这个网址打不开,可从网盘下载:h ...

  3. JS-隐士类型转换‘1’+1、‘1’-1、++‘1’为什么不一样?

    当 x=’1’时,x+1x-1+x-x++xtypeof(x+1)typeof(x-1)typeof(+x)typeof(-x)typeof(++x) 的结果分别是多少? 答案: x+1 //’11’ ...

  4. 从angularjs传递参数至Web API

    昨天分享的博文<angularjs呼叫Web API>http://www.cnblogs.com/insus/p/7772022.html,只是从Entity获取数据,没有进行参数POS ...

  5. Newtonsoft的序列化和反序列化

    class test    {        public string a;       public int b;        public byte[] c;        public In ...

  6. linux 与 windows 挖门罗币总结

    比特币之前一直很火,初次了解的时候才2000RMB一枚..看不懂哇,错失良机...当然了,看得懂也不买不起..当时还是穷学生. 最近又一直看到黑客利用linux漏洞挖门罗币获利的新闻,决定好生研究一下 ...

  7. Facebook React 和 Web Components(Polymer)对比优势和劣势

    目录结构 译者前言 Native vs. Compiled 原生语言对决预编译语言 Internal vs. External DSLs 内部与外部 DSLs 的对决 Types of DSLs - ...

  8. JAVA核心:内存、比较和Final

    1.java是如何管理内存的 java的内存管理就是对象的分配和释放问题.(其中包括两部分) 分配:内存的分配是由程序完成的,程序员需要通过关键字new为每个对象申请内存空间(基本类型除外),所有的对 ...

  9. 树莓派Opencv张正友棋盘标定法

    make.Makefile cc = gcc #最简易的makefile文件,这个可以用来进行文件之间的简易构建和链接,生成我们所需要的执行文件: prom = calc deps = $(shell ...

  10. ProxySQL实现Mysql读写分离 - 部署手册

    ProxySQL是一个高性能的MySQL中间件,拥有强大的规则引擎.ProxySQL是用C++语言开发的,也是percona推的一款中间件,虽然也是一个轻量级产品,但性能很好(据测试,能处理千亿级的数 ...