【LOJ#10180】烽火传递 单调队列+dp
题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小。
题解:设 \(dp[i]\) 表示考虑了序列前 i 个数的情况,且第 i 个数被选上时的最小贡献值,因此状态转移方程为:\(dp[i]=min\{dp[j],j\in[i-k,i-1] \}+val[i]\)。
这种状态转移方程满足:决策取值范围上下界均单调变化,每个决策在候选集合中插入和删除至多一次。因此可以用单调队列在决策候选集合上进行优化。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
int n,k,val[maxn],q[maxn<<1],l,r,dp[maxn];
void read_and_parse(){
n=read(),k=read();
for(int i=1;i<=n;i++)val[i]=read();
}
void solve(){
l=1,r=0;q[++r]=0;
for(int i=1;i<=n;i++){
while(l<=r&&q[l]<i-k)l++;
while(l<=r&&dp[i-1]<dp[q[r]])r--;
q[++r]=i-1;
dp[i]=dp[q[l]]+val[i];
}
int ans=0x3f3f3f3f;
for(int i=n-k+1;i<=n;i++)if(dp[i]<ans)ans=dp[i];
printf("%d\n",ans);
}
int main(){
read_and_parse();
solve();
return 0;
}
【LOJ#10180】烽火传递 单调队列+dp的更多相关文章
- [NOIP2010初赛]烽火传递+单调队列详细整理
P1313 [NOIP2010初赛]烽火传递 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上 ...
- [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)
传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...
- POJ 3017 单调队列dp
Cut the Sequence Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 8764 Accepted: 2576 ...
- zstu 4237 马里奥的求救——(单调队列DP)
题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...
- 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP
1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...
- 刷题总结——烽火传递(单调队列+dp)
题目: 题目描述 烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有 n 个烽火台,每个烽火 ...
- 【CF1077F2】Pictures with Kittens 单调队列+dp
题目大意:给定一个长度为 N 的序列,点有点权,从序列中选出恰好 X 个数,并且保证任意连续的 K 个数中均有一个被选中,求选出的点权最大是多少. 题解:此题可以作为 烽火传递+ 来处理,只不过在烽火 ...
- vijos P1243 生产产品(单调队列+DP)
P1243生产产品 描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...
- POJ 1821 单调队列+dp
题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...
随机推荐
- 基于DDD的.NET开发框架ABP实例,多租户 (Saas)应用程序,采用.NET MVC, Angularjs, EntityFramework-介绍
介绍 基于ABPZERO的多租户 (Saas)应用程序,采用ASP.NET MVC, Angularjs-介绍 ASP.NET Boilerplate作为应用程序框架. ASP.NET MVC和ASP ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- 基于RC4加密算法的图像加密
基于RC4加密算法的图像加密 某课程的一个大作业内容,对图像加密.项目地址:https://gitee.com/jerry323/RC4_picture 这里使用的是RC4(流.对称)加密算法,算法流 ...
- centos6.8下LNMP (nginx1.8.0+php5.6.10+mysql5.6.12) - 部署手册
在平时运维工作中,经常需要用到LNMP应用框架.以下对LNMP环境部署记录下: 1)前期准备:为了安装顺利,建议先使用yum安装依赖库[root@opd ~]#yum install -y make ...
- bootstrap完善按钮组bug
.btn.active { border: 1px solid #ff9400 !important; color: #ff9400 !important; } <div class=" ...
- 《Linux内核分析与实现》 第五周 读书笔记
第3章 进程管理 20135307张嘉琪 3.1 进程 进程就是处于执行期的程序(目标码存放在某种存储介质上),但进程并不仅仅局限于一段可执行程序代码.通常进程还要包含其他资源,像打开的文件,挂起的信 ...
- “数学口袋精灵”App的第三个Sprint计划----开发日记
一.现状 上一阶段基本完成一个小游戏,游戏具有:随机产生算式,判断对错功能.通过轻快的背景音乐,音效,给玩家提供一个良好的氛围. 二.任务认领 完成界面,基本功能后的后续任务: 冯美欣:设计&qu ...
- 在centos7虚拟机上挂载镜像,并设置yum源(包括遇到的问题)
挂载镜像方法很简单: mkdir /etc/a mount /dev/cdrom /etc/a 查看挂载情况 : df -h 修改yum源文件 : 先把 CentOS-Base.repo 文件名改一 ...
- [MS] 微软官网下载安装SQLSERVER2019的rpm
快速入门:安装 SQL Server 和 Red Hat 上创建数据库 https://docs.microsoft.com/zh-cn/sql/linux/quickstart-install-co ...
- hive桶表
创建桶表,提高查询速度, 下免.tom'jerry'scott如果他们经过hash计算,得到的hash值一样,则放到桶一个表中. 创建桶表 指明桶的分桶条件,以sname分桶;分为5个桶