题目链接

思路

首先,最优秀的分法一定是每段两端都是这一段中最多的那个,否则可以把不是的那个踢出去单独成段肯定会更优秀。然后就成了将这个序列分段,保证每段两端元素相同的最大收益和。

用a[i]记录第i个位置上的数,用s[i]记录前i个元素中a[i]出现的次数。f[i]表示以前i个数的最大收益。

首先考虑\(n^2\)的dp。明显\(f[i]=max\{f[j]+a[i]*(s[i]-s[j]+1)^2\} (a[i]==a[j])\)

	for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
if(a[i]==a[j])
f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1));

然后可发现,在上面的式子中,s数组是单增的,f数组也是单增的。如果知道了两个位置x和y(x<y)。通过二分,可以找到一个now使得当以后的某个位置pos的s[pos]>now之后的所有位置用x转移会比y优秀,这时y就没用了。所以用一个单调栈维护即可。

\(O(n^2)\)代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const int N=100000+100;
ll read() {
ll x=0,f=1; char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int n;
int a[N],s[N],c[N];
ll f[N];
int main() {
n=read();
for(int i=1;i<=n;++i) {
a[i]=read();
s[i]=++c[a[i]];
}
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
if(a[i]==a[j])
f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1));
cout<<f[n];
return 0;
}

\(O(n)\)代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<map>
#include<bits/stdc++.h>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
const int N=100000+100;
ll read() {
ll x=0,f=1; char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
vector<int> sta[N];
int a[N],s[N],c[N];
ll f[N];
ll calc(int x,int y) {
return f[x-1]+(ll)a[x]*y*y;
}
int n;
int find(int x,int y) {//寻找x比y优秀的最早时间
int l=1,r=n;
int ans=n+1;
while(l<=r) {
int mid=l+r>>1;
if(calc(x,mid-s[x]+1)>=calc(y,mid-s[y]+1)) ans=mid,r=mid-1;
else l=mid+1;
}
return ans;
}
int main() {
n=read();
for(int i=1;i<=n;++i) {
a[i]=read();
s[i]=++c[a[i]];
}
for(int i=1;i<=n;++i) {
while(sta[a[i]].size()>=2&&find(sta[a[i]][sta[a[i]].size()-1],i)>=find(sta[a[i]][sta[a[i]].size()-2],sta[a[i]][sta[a[i]].size()-1]))
sta[a[i]].pop_back();
sta[a[i]].push_back(i);
while(sta[a[i]].size()>=2&&find(sta[a[i]][sta[a[i]].size()-2],sta[a[i]][sta[a[i]].size()-1])<=s[i]) {
sta[a[i]].pop_back();
}
int now=sta[a[i]].size();
f[i]=calc(sta[a[i]][now-1],s[i]-s[sta[a[i]][now-1]]+1);
}
cout<<f[n];
}

[bzoj4709][柠檬]的更多相关文章

  1. bzoj4709 柠檬 单调栈,DP,斜率优化

    目录 前言吐槽 思路 错误 代码 /* 前言吐槽 我真的不知道是咋做的 不过大约就是栈的斜率优化 哪位大佬见识广,给看看吧(乞讨) 思路 s是值等于a[i]的前缀和 转移方程$f[i]=max(f[i ...

  2. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  3. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  4. 【BZOJ4709】柠檬(动态规划,单调栈)

    [BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...

  5. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  6. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  7. 【bzoj4709】[Jsoi2011]柠檬 斜率优化

    题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...

  8. BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  9. BZOJ4709 JSOI2011柠檬(动态规划)

    首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...

随机推荐

  1. 写入mssql出现乱码

    1.出现乱码的场景如下: --------------------------------------------------------------------------------------- ...

  2. Elasticsearch学习总结 (Centos7下Elasticsearch集群部署记录)

    一.  ElasticSearch简单介绍 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticse ...

  3. 如何新增一个ssh-key文件

    前言 由于在公司有一个sshkey 在用,用于绑定公司的git code 仓库.那么在家要连上git hub 仓库,就也需要一个 ssh key .为了避免公司信息外露,所以还是新增一个ssh key ...

  4. Git的其他用法

    目录: 减少[.git]文件夹的大小和文件数 更换git for windows的文本编辑器 修改已经提交的commit说明 合并commit 解决merge时出现的冲突 回退一个merge 获取某一 ...

  5. PHP加密与编码技术

    md5加密: string  md5( string $str [,bool $raw output=false]) md5加密方法用的挺多,有两个参数,第一个参数是要加密的字符串,第二个参数默认为f ...

  6. PAT L2-011 玩转二叉树

    https://pintia.cn/problem-sets/994805046380707840/problems/994805065406070784 给定一棵二叉树的中序遍历和前序遍历,请你先将 ...

  7. CentOS yum 安装获取原始rpm文件的方法

    1. 有时候 yum install 需要从几个repo下载rpm包速度很慢,不如自己能够将rpm包下载下来继续使用,比较好. 发现yum install 有两种方式能够将下载的rpm包保存下来. 方 ...

  8. Fiddler 跟踪手机请求.

    1. 想着跟踪下手机的部分请求, 所以使用fiddler 挂代理的方式来处理. 步骤 安装fiddler. 直接百度 安装即可.. 2. fiddler设置 tool-options设置 我试过解密h ...

  9. mysql学习笔记一 —— 数据的增删改查

    1.连接mysql mysql 直接回车(是以root身份,密码空,登陆的是本机localhost) [root@www mysql]# mysql -uroot -p123 -S /var/lib/ ...

  10. delphi DBGRID 刷新定位问题 [问题点数:0分]

    我程序是 adoquery+datasource+dbgrid 做的我有一个窗体:有四个按钮.分别是新建,修改,删除,刷新. 新建第一条记录,dbgrid显示一条记录,新建第二条记录.DBGRID总共 ...