[bzoj4709][柠檬]
思路
首先,最优秀的分法一定是每段两端都是这一段中最多的那个,否则可以把不是的那个踢出去单独成段肯定会更优秀。然后就成了将这个序列分段,保证每段两端元素相同的最大收益和。
用a[i]记录第i个位置上的数,用s[i]记录前i个元素中a[i]出现的次数。f[i]表示以前i个数的最大收益。
首先考虑\(n^2\)的dp。明显\(f[i]=max\{f[j]+a[i]*(s[i]-s[j]+1)^2\} (a[i]==a[j])\)
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
if(a[i]==a[j])
f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1));
然后可发现,在上面的式子中,s数组是单增的,f数组也是单增的。如果知道了两个位置x和y(x<y)。通过二分,可以找到一个now使得当以后的某个位置pos的s[pos]>now之后的所有位置用x转移会比y优秀,这时y就没用了。所以用一个单调栈维护即可。
\(O(n^2)\)代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const int N=100000+100;
ll read() {
ll x=0,f=1; char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int n;
int a[N],s[N],c[N];
ll f[N];
int main() {
n=read();
for(int i=1;i<=n;++i) {
a[i]=read();
s[i]=++c[a[i]];
}
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
if(a[i]==a[j])
f[i]=max(f[i],f[j-1]+a[i]*(s[i]-s[j]+1)*(s[i]-s[j]+1));
cout<<f[n];
return 0;
}
\(O(n)\)代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<map>
#include<bits/stdc++.h>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
const int N=100000+100;
ll read() {
ll x=0,f=1; char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
vector<int> sta[N];
int a[N],s[N],c[N];
ll f[N];
ll calc(int x,int y) {
return f[x-1]+(ll)a[x]*y*y;
}
int n;
int find(int x,int y) {//寻找x比y优秀的最早时间
int l=1,r=n;
int ans=n+1;
while(l<=r) {
int mid=l+r>>1;
if(calc(x,mid-s[x]+1)>=calc(y,mid-s[y]+1)) ans=mid,r=mid-1;
else l=mid+1;
}
return ans;
}
int main() {
n=read();
for(int i=1;i<=n;++i) {
a[i]=read();
s[i]=++c[a[i]];
}
for(int i=1;i<=n;++i) {
while(sta[a[i]].size()>=2&&find(sta[a[i]][sta[a[i]].size()-1],i)>=find(sta[a[i]][sta[a[i]].size()-2],sta[a[i]][sta[a[i]].size()-1]))
sta[a[i]].pop_back();
sta[a[i]].push_back(i);
while(sta[a[i]].size()>=2&&find(sta[a[i]][sta[a[i]].size()-2],sta[a[i]][sta[a[i]].size()-1])<=s[i]) {
sta[a[i]].pop_back();
}
int now=sta[a[i]].size();
f[i]=calc(sta[a[i]][now-1],s[i]-s[sta[a[i]][now-1]]+1);
}
cout<<f[n];
}
[bzoj4709][柠檬]的更多相关文章
- bzoj4709 柠檬 单调栈,DP,斜率优化
目录 前言吐槽 思路 错误 代码 /* 前言吐槽 我真的不知道是咋做的 不过大约就是栈的斜率优化 哪位大佬见识广,给看看吧(乞讨) 思路 s是值等于a[i]的前缀和 转移方程$f[i]=max(f[i ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- bzoj4709: [Jsoi2011]柠檬 斜率优化
题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...
- 【BZOJ4709】柠檬(动态规划,单调栈)
[BZOJ4709]柠檬(动态规划,单调栈) 题面 BZOJ 题解 从左取和从右取没有区别,本质上就是要分段. 设\(f[i]\)表示前\(i\)个位置的最大值. 那么相当于我们枚举一个前面的位置\( ...
- 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈
[BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...
- bzoj4709 [jsoi2011]柠檬
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...
- 【bzoj4709】[Jsoi2011]柠檬 斜率优化
题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...
- BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...
随机推荐
- Html5前端笔记
获取Dpi 在 window.load中添加: (function(){ if (!window.screen.deviceXDPI){ var tmpNode = document.createEl ...
- if...else 小练习
# 需求:猜年龄,可以让用户最多猜三次 age = 60 for i in range(3): guess = int(input("Input Age: ")) if guess ...
- Week 1 工程表格
PSP2.1 Personal Software Process Stages Time Planning 计划 · Estimate · 估计这个任务需要多少时间 6h30min Developme ...
- jdk自带的jvisualvm-监控远程linux
简介 jdk有好多自带的工具比如jconsole.jvisualvm.jstatd等 Windows的路径:%JAVA_HOME/bin/目录下,配置好环境变量直接用cmd执行jvisualvm命令即 ...
- Github链接及git学习心得总结
众所周知GitHub已经是当下非常流行的代码托管库了,全世界有无数的程序员把他们的代码放在GitHub里.那比起云盘之类的工具,用GitHub有什么好处呢:1. 以后在帖子里只需要扔一个链接,大家就能 ...
- 《软件工程》小组团队项目-小学生四则运算APP(First Sprint)
<软件工程>团队项目我们小组选择了小学生四则运算APP,在上学期原有的项目基础上进行更新升级.(自我感觉我们团队上学期的小学生四则运算APP是较为成功且实用的,不过这学期学习到了新的知识, ...
- Failed to execute goal org.springframework.boot
报错 [ERROR] Failed to execute goal org.springframework.boot:spring-boot-maven-plugin:1.4.0.RELEASE:ru ...
- Install odoo 11(10) on centos7
https://www.odoo.com/documentation/11.0/setup/install.html https://nightly.odoo.com/ https://www.odo ...
- eclipse webproject activiti
https://stackoverflow.com/questions/42858723/activiti-eclipse-maven-project-to-dynamic-web-project-a ...
- QQ互联登录提示redirect uri is illegal(100010)完美解决方法
大概2015年3月低,腾讯QQ互联开发平台调整了有关QQ登录应用回调地址填写规则,用来修复QQ登录过程因回调地址的漏洞可能导致存在的安全问题. 博主接触这块较多,但也是四月才了解此事,从4月起,所有新 ...