scipy.stats与统计学:4个概率分布:N,chi2,F,t

 

四个常用分布的概率密度函数、分布函数、期望、分位数、以及期望方差标准差中位数原点矩:

1,正态分布:

from scipy.stats import norm

(1)概率密度函数:

norm.pdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 x 处的值

(2)概率分布函数:

norm.cdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 负无穷 到 x 上的积分,也就是概率分布函数的值
norm.sf(x, mu, sigma)                # 返回 1 - norm.cdf(x, mu, sigma^2)

(3)数学期望:

norm.expect( func = f, loc = mu, scale = sigma )       # 返回f(x)的期望,注意这里的loc和scale

(4)分位数:

norm.isf(1-alpha, mu, sigma)         # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数
norm.ppf(alpha, mu, sigma)           # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数

(5)最大似然估计:

norm.fit(a)                                 # 假定数组a来自正态分布,返回mu和sigma的最大似然估计。感觉结果不咋地。。

(6)分布的数量关系:

norm.mean(mu,sigma)                         # N(mu,sigma^2) 的均值
norm.var(mu,sigma)                          # N(mu,sigma^2) 的方差
norm.std(mu,sigma)                          # N(mu,sigma^2) 的方差再开平方根
norm.median(mu,sigma)                       # N(mu,sigma^2) 的中位数
norm.moment(a,mu,sigma)                     # N(mu,sigma^2) 的 a 阶原点矩

(7)产生满足正态分布的随机数:

norm.rvs(loc = mu,scale = sigma, size = N)       # 产生N个服从N(mu,sigma^2)的随机数

2,卡方分布:chi2

from scipy.stats import chi2

(1)概率密度函数:

chi2.pdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 x 处的值

(2)概率分布函数:

chi2.cdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 0 到 x 上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - chi2.cdf(x, n)

(3)数学期望:

chi2.expect( func = f , args=(n,) )  # 返回f(x)的期望

(4)分位数:

chi2.isf(1-alpha, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
chi2.ppf(alpha, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

chi2.mean(n)                         # \chi^2(n) 的均值
chi2.var(n)                          # \chi^2(n) 的方差
chi2.std(n)                          # \chi^2(n) 的方差再开平方根
chi2.median(n)                       # \chi^2(n) 的中位数
chi2.moment(a,n)                     # \chi^2(n) 的 a 阶原点矩

3,F分布:

from scipy.stats import f

(1)概率密度函数:

f.pdf(x, m, n)                       # 返回F(m,n)的概率密度函数在x处的值

(2)概率分布函数:

f.cdf(x, m, n)                       # 返回F(m,n)的概率密度函数在0到x上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - f.cdf(x, m, n)

(3)数学期望:

f.expect( func = g , args=(m, n) )   # 返回g(x)的数学期望

(4)分位数:

f.isf(1-alpha, m, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
f.ppf(alpha, m, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

f.mean(m, n)                         # F(m,n) 的均值
f.var(m, n)                          # F(m,n) 的方差
f.std(m, n)                          # F(m,n) 的方差再开平方根
f.median(m, n)                       # F(m,n) 的中位数
f.moment(a, m, n)                    # F(m,n) 的 a 阶原点矩
 

4,t分布:

from scipy.stats import t

(1)概率密度函数:

t.pdf(x, n)                         # 返回t(n)的概率密度函数在x处的值

(2)概率分布函数:

t.cdf(x, n)                         # 返回t(n)的概率密度函数在负无穷到x上的积分,也就是概率分布函数的值
t.sf(x, n)                          # 返回 1 - t.cdf(x, n)

(3)数学期望:

t.expect( func = f , args=(n,) )    # 返回f(x)的期望

(4)分位数:

t.isf(1-alpha, n)                   # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数
t.ppf(alpha, n)                     # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

t.mean(n)                           # t(n) 的均值
t.var(n)                            # t(n) 的方差
t.std(n)                            # t(n) 的方差再开平方根
t.median(n)                         # t(n) 的中位数
t.moment(a,n)                       # t(n) 的 a 阶原点矩
 


scipy.stats与统计学:4个概率分布:N,chi2,F,t的更多相关文章

  1. Scipy教程 - 统计函数库scipy.stats

    http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...

  2. scipy.stats

    scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...

  3. 关于使用scipy.stats.lognorm来模拟对数正态分布的误区

    lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...

  4. [原创博文] 用Python做统计分析 (Scipy.stats的文档)

    [转自] 用Python做统计分析 (Scipy.stats的文档) 对scipy.stats的详细介绍: 这个文档说了以下内容,对python如何做统计分析感兴趣的人可以看看,毕竟Python的库也 ...

  5. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  6. 标准正态分布表(scipy.stats)

    0. 标准正态分布表与常用值 Z-score 是非标准正态分布标准化后的 x即 z=x−μσ" role="presentation">z=x−μσz=x−μσ 表 ...

  7. python scipy stats学习笔记

    from scipy.stats import chi2 # 卡方分布from scipy.stats import norm # 正态分布from scipy.stats import t # t分 ...

  8. Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续和离散两种。+忽略程序中警告信息+np.newaxis解释

  9. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

随机推荐

  1. centos中less翻页查询的用法

    用法实例: cat 21342.log | less

  2. 前端接口自动化测试工具-DOClever使用介绍(转载)

    DOClever 不仅集成了文档编写,团队协作,接口运行,mock 数据等功能,还有两个功能是让我们团队大大的提高工作效率的.一个是接口的自动化生成,可以根据接口数据自动生成文档信息,还有一个便是本文 ...

  3. 初窥Java之四

    一.条件判断之if判断 语法格式:if(结果为布尔类型的结果值){ 功能执行语句; }else if(结果为布尔类型的结果值){ 功能执行语句; } ....{ }else{ 功能执行语句: } 注意 ...

  4. 生日蛋糕 POJ - 1190 (搜索+剪枝)

    7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱.当 ...

  5. CDN拾遗

    作为前端er,辛辛苦苦搬完砖,好不容易上线之后,正准备告一声万事大吉,回家吃鸡.忽然qa/pm/老板问,为什么我这里还是没有更新?只能是弱弱的回一声,清个缓存看看?或者还有那么一天,发现大部分区域都是 ...

  6. html5手势操作与多指操作封装与Canvas图片裁切实战

    当前情况,移动端的开发占比越来越高,单指的拖拽触碰等操作是常规需要.特殊的多指操作与手势操作还需另做处理,而且还涉及到兼容性问题. // 屏幕上存在两根或两根以上的手指 时触发 仅IOS存在手势事件, ...

  7. js算法初窥07(算法复杂度)

    算法复杂度是我们来衡量一个算法执行效率的一个度量标准,算法复杂度通常主要有时间复杂度和空间复杂度两种.时间复杂度就是指算法代码在运行最终得到我们想要的结果时所消耗的时间,而空间复杂度则是指算法中用来存 ...

  8. Codeforces.1088D.Ehab and another another xor problem(交互 思路)

    题目链接 边颓边写了半上午A掉啦233(本来就是被无数人过掉的好吗→_→) 首先可以\(Query\)一次得到\(a,b\)的大小关系(\(c=d=0\)). 然后发现我们是可以逐位比较出\(a,b\ ...

  9. Python2.*与Python3.*共存问题

    安装Python 2.7后,本来在3.4下能正常使用的脚本无法运行.网上有的方法是把两个版本的主程序分别改名为python2和python3,人眼判断脚本,手输命令行执行脚本.像我这样喜欢双击.拖拽的 ...

  10. centos7下使用yum安装pip

    centos7下使用yum安装pip 首先安装epel扩展源: yum -y install epel-release 更新完成之后,就可安装pip: yum -y install python-pi ...