scipy.stats与统计学:4个概率分布:N,chi2,F,t

 

四个常用分布的概率密度函数、分布函数、期望、分位数、以及期望方差标准差中位数原点矩:

1,正态分布:

from scipy.stats import norm

(1)概率密度函数:

norm.pdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 x 处的值

(2)概率分布函数:

norm.cdf(x, mu, sigma)               # 返回N(mu,sigma^2)的概率密度函数在 负无穷 到 x 上的积分,也就是概率分布函数的值
norm.sf(x, mu, sigma)                # 返回 1 - norm.cdf(x, mu, sigma^2)

(3)数学期望:

norm.expect( func = f, loc = mu, scale = sigma )       # 返回f(x)的期望,注意这里的loc和scale

(4)分位数:

norm.isf(1-alpha, mu, sigma)         # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数
norm.ppf(alpha, mu, sigma)           # 返回值s满足:norm.cdf(s, mu, sigma^2) = alpha,s就是alpha分位数

(5)最大似然估计:

norm.fit(a)                                 # 假定数组a来自正态分布,返回mu和sigma的最大似然估计。感觉结果不咋地。。

(6)分布的数量关系:

norm.mean(mu,sigma)                         # N(mu,sigma^2) 的均值
norm.var(mu,sigma)                          # N(mu,sigma^2) 的方差
norm.std(mu,sigma)                          # N(mu,sigma^2) 的方差再开平方根
norm.median(mu,sigma)                       # N(mu,sigma^2) 的中位数
norm.moment(a,mu,sigma)                     # N(mu,sigma^2) 的 a 阶原点矩

(7)产生满足正态分布的随机数:

norm.rvs(loc = mu,scale = sigma, size = N)       # 产生N个服从N(mu,sigma^2)的随机数

2,卡方分布:chi2

from scipy.stats import chi2

(1)概率密度函数:

chi2.pdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 x 处的值

(2)概率分布函数:

chi2.cdf(x, n)                       # 返回\chi^2(n)的概率密度函数在 0 到 x 上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - chi2.cdf(x, n)

(3)数学期望:

chi2.expect( func = f , args=(n,) )  # 返回f(x)的期望

(4)分位数:

chi2.isf(1-alpha, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
chi2.ppf(alpha, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

chi2.mean(n)                         # \chi^2(n) 的均值
chi2.var(n)                          # \chi^2(n) 的方差
chi2.std(n)                          # \chi^2(n) 的方差再开平方根
chi2.median(n)                       # \chi^2(n) 的中位数
chi2.moment(a,n)                     # \chi^2(n) 的 a 阶原点矩

3,F分布:

from scipy.stats import f

(1)概率密度函数:

f.pdf(x, m, n)                       # 返回F(m,n)的概率密度函数在x处的值

(2)概率分布函数:

f.cdf(x, m, n)                       # 返回F(m,n)的概率密度函数在0到x上的积分,也就是概率分布函数的值
chi2.sf(x, n)                        # 返回 1 - f.cdf(x, m, n)

(3)数学期望:

f.expect( func = g , args=(m, n) )   # 返回g(x)的数学期望

(4)分位数:

f.isf(1-alpha, m, n)                 # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数
f.ppf(alpha, m, n)                   # 返回值s满足:chi2.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

f.mean(m, n)                         # F(m,n) 的均值
f.var(m, n)                          # F(m,n) 的方差
f.std(m, n)                          # F(m,n) 的方差再开平方根
f.median(m, n)                       # F(m,n) 的中位数
f.moment(a, m, n)                    # F(m,n) 的 a 阶原点矩
 

4,t分布:

from scipy.stats import t

(1)概率密度函数:

t.pdf(x, n)                         # 返回t(n)的概率密度函数在x处的值

(2)概率分布函数:

t.cdf(x, n)                         # 返回t(n)的概率密度函数在负无穷到x上的积分,也就是概率分布函数的值
t.sf(x, n)                          # 返回 1 - t.cdf(x, n)

(3)数学期望:

t.expect( func = f , args=(n,) )    # 返回f(x)的期望

(4)分位数:

t.isf(1-alpha, n)                   # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数
t.ppf(alpha, n)                     # 返回值s满足:t.cdf(s, n) = alpha,  s就是alpha分位数

(5)分布的数量关系:

t.mean(n)                           # t(n) 的均值
t.var(n)                            # t(n) 的方差
t.std(n)                            # t(n) 的方差再开平方根
t.median(n)                         # t(n) 的中位数
t.moment(a,n)                       # t(n) 的 a 阶原点矩
 


scipy.stats与统计学:4个概率分布:N,chi2,F,t的更多相关文章

  1. Scipy教程 - 统计函数库scipy.stats

    http://blog.csdn.net/pipisorry/article/details/49515215 统计函数Statistical functions(scipy.stats) Pytho ...

  2. scipy.stats

    scipy.stats Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续的和离散的两种.所有的连续随机变量都是rv_continuous的派生类的对象,而所有的离散随机变量都是 ...

  3. 关于使用scipy.stats.lognorm来模拟对数正态分布的误区

    lognorm方法的参数容易把人搞蒙.例如lognorm.rvs(s, loc=0, scale=1, size=1)中的参数s,loc,scale, 要记住:loc和scale并不是我们通常理解的对 ...

  4. [原创博文] 用Python做统计分析 (Scipy.stats的文档)

    [转自] 用Python做统计分析 (Scipy.stats的文档) 对scipy.stats的详细介绍: 这个文档说了以下内容,对python如何做统计分析感兴趣的人可以看看,毕竟Python的库也 ...

  5. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  6. 标准正态分布表(scipy.stats)

    0. 标准正态分布表与常用值 Z-score 是非标准正态分布标准化后的 x即 z=x−μσ" role="presentation">z=x−μσz=x−μσ 表 ...

  7. python scipy stats学习笔记

    from scipy.stats import chi2 # 卡方分布from scipy.stats import norm # 正态分布from scipy.stats import t # t分 ...

  8. Scipy的stats模块包含了多种概率分布的随机变量,随机变量分为连续和离散两种。+忽略程序中警告信息+np.newaxis解释

  9. 利用Python进行数据分析(1) 简单介绍

    一.处理数据的基本内容 数据分析 是指对数据进行控制.处理.整理.分析的过程. 在这里,“数据”是指结构化的数据,例如:记录.多维数组.Excel 里的数据.关系型数据库中的数据.数据表等. 二.说说 ...

随机推荐

  1. ionic2集成sdk后,连接超时的问题

    这几天在测试app的时候,偶尔会发现集成的好视通sdk在进入会议室的时候出现连接超时的问题,一直卡在‘正在获取版本信息’的页面,经反复测试后这种现象主要出现在点击返回按钮和退出登录按钮的时候会出现,也 ...

  2. Python_logging模块

    日志:方便用户了解系统.软件或应用的运行情况,及时发现问题并快速定位.解决问题. 一个日志信息对应的是一个事件的发生,而一个事件需要包括的几个内容: 事件发生时间 事件发生位置 事件发生严重程度(日志 ...

  3. 关于window.open窗口的resize事件

    jQuery 事件 - resize() 方法 当调整浏览器窗口的大小时,发生 resize 事件. resize() 方法触发 resize 事件,或规定当发生 resize 事件时运行的函数. & ...

  4. MVC(面试)

    一般都是三层,表现层(UI).业务逻辑层(BLL).数据访问层(DAL),这些东西不用深究,别为了设计而设计就行.分三层是为了使项目架构体系更加清晰,而且项目参与人员的分工也可以更加明确,也有利于项目 ...

  5. 最短路(bellman)-hdu2066

    题目链接:https://vjudge.net/problem/HDU-2066 题目描述: 代码实现: #include <cstdio> #include <cstring> ...

  6. TF:Tensorflor之session会话的使用,定义两个矩阵,两种方法输出2个矩阵相乘的结果—Jason niu

    import tensorflow as tf matrix1 = tf.constant([[3, 20]]) matrix2 = tf.constant([[6], [100]]) product ...

  7. 堆优化dijstra

    因为spfa没事就被卡一卡,所以堆优化dijstra就显得很重要,在最短路或者其模型里边,最少有一条边是没有被更新过的,也就是它是最短的,同理从这个点开始也有一条边最短,所以每次就找最短的然后松弛操作 ...

  8. 超越halcon速度的二值图像的腐蚀和膨胀,实现目前最快的半径相关类算法(附核心源码)。

    我在两年前的博客里曾经写过 SSE图像算法优化系列七:基于SSE实现的极速的矩形核腐蚀和膨胀(最大值和最小值)算法  一文,通过SSE的优化把矩形核心的腐蚀和膨胀做到了不仅和半径无关,而且速度也相当的 ...

  9. 从小白到区块链工程师:第一阶段:Go语言中的函数学习(6)

    一. 为什么要有函数 我们在以后的编码过程中,有很多代码会重复出现,这些重复实现的代码,我们不需要每次需要用到的时候都编写,我们将重复的代码封装起来.比如在一个网站中,无论是消费的金额还是积分的积累等 ...

  10. JMeter快速入门

    今天的年会已过,仍然是空手而归,不过俺坚信能让生活稳定永远都是努力.由于隔壁组负责年会的抢红包项目,因而趁此机会把通过工具模拟高并发的知识补了补,通过和身边大师的交流,总算是对压力测试有了个简要的了解 ...