如果知道了树的形态,那么可以树形DP,每个时刻只需要计算必选根的独立集个数以及必不选根的独立集个数。

那么现在知道独立集个数,要构造出树,可以考虑DP这棵树的形态,然后将之前树形DP的值作为现在DP的状态,即$dp[i][j]$表示必选根的独立集个数为$i$,必不选根的独立集个数为$j$时,树的节点数最少是多少。

那么完成这个DP之后,输出方案只需要沿着最优值来的顺序dfs输出即可。

#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<time.h>
#include<assert.h>
#include<iostream>
using namespace std;
typedef long long LL;
typedef pair<int,int>pi;
const int Inf=100;
int cnt;
int dp[2020][2020];
struct Node{
short i,j,x,y;
Node(){}
Node(short i,short j,short x,short y):i(i),j(j),x(x),y(y){}
};
Node pre[2020][2020];
void dfs(int u,int x,int y){
if(x==1&&y==1)return ;
//printf("x=%d y=%d\n",x,y);
dfs(u,pre[x][y].i,pre[x][y].j);
++cnt;
printf("%d %d\n",u,cnt);
dfs(cnt,pre[x][y].x,pre[x][y].y);
}
vector<int>V[3000];
int main(){
int tl=0;
for(int i=1;i<=2005;i++){
for(int j=i;j<=2005;j+=i)V[j].push_back(i);
}
for(int i=0;i<2020;i++)for(int j=0;j<2020;j++)dp[i][j]=Inf;
dp[1][1]=1;
for(int i=1;i<=2005;i++){
for(int j=1;j<=2005;j++){
if(dp[i][j]>15)continue;
for(int y=1;y*i<=2005;y++){
for(int x=1;(x+y)*j<=2005;x++){
int tmp=dp[i][j]+dp[x][y];
int nx=y*i,ny=j*(x+y);
if(dp[nx][ny]>tmp){
dp[nx][ny]=tmp;
pre[nx][ny]=Node(i,j,x,y);
}
tl++;
}
}
for(int y=1;y*(i+j)<=2005;y++){
for(int x=1;x*j<=2005;x++){
int tmp=dp[i][j]+dp[x][y];
int nx=j*x,ny=y*(i+j);
if(dp[nx][ny]>tmp){
dp[nx][ny]=tmp;
pre[nx][ny]=Node(x,y,i,j);
}
tl++;
}
} }
}
/*
for(int nx=1;nx<=2005;nx++){
for(int ny=1;ny<=2005;ny++){
if(nx==1&&ny==1){dp[nx][ny]=1;continue;}
for(int it1=0;it1<V[nx].size();it1++){
for(int it2=0;it2<V[ny].size();it2++){
int i=V[nx][it1],j=V[ny][it2];
int y=nx/i,x=ny/j-y;
if(x>=1&&y>=1&&dp[i][j]+dp[x][y]<dp[nx][ny]){
dp[nx][ny]=dp[i][j]+dp[x][y];
pre[nx][ny]=Node(i,j,x,y);
}
tl++;
}
}
}
}
*/
//printf("tl=%d\n",tl);
int _;scanf("%d",&_);
while(_--){
int m;
scanf("%d",&m);
//for(int tm=1;tm<=2000;tm++){
// m=tm+1;
m++;
bool flag=0;
int sx=-1,sy;
for(int i=0;i<=m;i++){
if(dp[i][m-i]<=15){
sx=i;sy=m-i;
break;
}
}
if(sx<0)puts("-1");
else{
printf("%d\n",dp[sx][sy]);
cnt=1;
dfs(1,sx,sy);
}
}
return 0;
}

  

ZOJ3951 : Independent Set的更多相关文章

  1. 写一个程序可以对两个字符串进行测试,得知第一个字符串是否包含在第二个字符串中。如字符串”PEN”包含在字符串“INDEPENDENT”中。

    package lovo.test; import java.util.Scanner; public class Java { @param args public static void main ...

  2. Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...

  3. [ZZ] KlayGE 游戏引擎 之 Order Independent Transparency(OIT)

    转载请注明出处为KlayGE游戏引擎,本文的永久链接为http://www.klayge.org/?p=2233 http://dogasshole.iteye.com/blog/1429665 ht ...

  4. Andrew Ng机器学习公开课笔记–Independent Components Analysis

    网易公开课,第15课 notes,11 参考, PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低 ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的 对于 ...

  5. Questions that are independent of programming language. These questions are typically more abstract than other categories.

    Questions that are independent of programming language.  These questions are typically more abstract ...

  6. Interview-Largest independent set in binary tree.

    BT(binary tree), want to find the LIS(largest independent set) of the BT. LIS: if the current node i ...

  7. 【转】NDK编译可执行文件在Android L中运行显示error: only position independent executables (PIE) are supported.失败问题解决办法。

    原文网址:http://blog.csdn.net/hxdanya/article/details/39371759 由于使用了NDK编译的可执行文件在应用中调用,在4.4及之前的版本上一直没出问题. ...

  8. 基于Hama并联平台Finding a Maximal Independent Set 设计与实现算法

    笔者:白松 NPU学生. 转载请注明出处:http://blog.csdn.net/xin_jmail/article/details/32101483. 本文參加了2014年CSDN博文大赛,假设您 ...

  9. More than one file was found with OS independent path 錯誤

    More than one file was found with OS independent path 'lib/armeabi/libmrpoid.so',. 翻譯過來就是:在操作系統的獨立目錄 ...

随机推荐

  1. chart API笔记

    1. 参数说明 http://chart.apis.google.com/chart? chs=250x100 &chd=t:60,40 &cht=p3 &chl=Hello| ...

  2. 浅拷贝和深拷贝(谈谈java中的clone)

    clone顾名思义就是复制, 在Java语言中, clone方法被对象调用,所以会复制对象.所谓的复制对象,首先要分配一个和源对象同样大小的空间,在这个空间中创建一个新的对象.那么在java语言中,有 ...

  3. LOCK TABLES 和 UNLOCK TABLES

    MySQLdump的时LOCK TABLES 和 UNLOCK TABLES 在mysqldump后的数据中会发现有 LOCK TABLES tables_name WRITE;和结尾处有 UNLOC ...

  4. python虚拟环境搭建

    1.安装python环境 2.检查pip 3.pip install virtualenv 4.创建测试:virtualenv  testvir 5.pip install virtualenvwra ...

  5. PowerDesigner逆向生成MYSQL数据库表结构总结

    由于日常数据建模经常使用PowerDesigner,使用逆向工程能更加快速的生成模型提高效率,所以总结使用如下: 1.      安装MYSQL的ODBC驱动 Connector/ODBC 5.1.1 ...

  6. “Error:(1, 1) java: 非法字符: '\ufeff'”错误解决办法

    原因 用Windows记事本打开并修改.java文件保存后重新编译运行项目出现“Error:(1, 1) java: 非法字符: '\ufeff'”错误,如下图所示:     原来这是因为Window ...

  7. Centos7防火墙常用命令及mask锁定不能添加端口问题

    一.开放端口 sudo firewall-cmd --zone=public --add-port=3000/tcp --permanent sudo firewall-cmd --reload 二. ...

  8. skyline添加wfs服务时,弹出错误“no layers were found”!

    1.问题描述: 使用TerraExplorer Pro添加ArcGIS Server 10.2发布的WFS服务图层时,弹出如下错误: 2.错误原因: 发布wfs服务前,图层数据源的空间参考未设置,不能 ...

  9. 再理解tcp backlog

    在Linux 2.2以前,backlog大小包括了半连接状态和全连接状态两种队列大小.linux 2.2以后,分离为两个backlog来分别限制半连接SYN_RCVD状态的未完成连接队列大小跟全连接E ...

  10. 删除Docker中所有已停止的容器

    方法一: #显示所有的容器,过滤出Exited状态的容器,取出这些容器的ID, sudo docker ps -a|grep Exited|awk '{print $1}' #查询所有的容器,过滤出E ...