题目链接

刷牛客一战到底做到的,感觉还挺有趣...


\(Description\)

求给定\(n\)及序列\(A_i\),求$$\sum_{i\lt j\lt k}(A_i\oplus A_j)(A_j\oplus A_k)(A_i\oplus A_k)$$

\(n\leq10^5,\ A_i\leq10^9\)。

\(Solution\)

首先有一个\(O(n\log^2n)\)的做法,代码这里有,看来是跑不过去..(不知道提交记录里有没有过的)



来自国庆正睿dls课件。

能跑过的做法:

注意,口胡的,不保证正确性= =(但是算法是对的)(没办法啊找不到题解,还比较赶时间...)

当然还是想拆开乘法按位统计。

考虑枚举每一个异或结果\(2^x\)的贡献:$$Ans=\sum_{i=0}{29}\sum_{j=0}{29}\sum_{k=0}{29}2{i+j+k}\times ?$$

乘上多少呢?现在我们需要统计\(A_i\oplus A_j\)在第\(i\)为\(1\),且\(A_j\oplus A_k\)在第\(j\)位为\(1\),且\(A_k\oplus A_i\)在第\(k\)位为\(1\)的方案数(不要弄混...\(A_i\)中的\(i\)就是下标,外面的\(i\)是枚举的\(2^i\))。

考虑枚举\(A_i\)第\(i\)位是\(0\)还是\(1\),设为\(a\),那么\(A_j\)的第\(i\)位是\(a\oplus1\);同理枚举\(A_j\)的第\(j\)位是\(b\),那么\(A_k\)的第\(j\)位是\(b\oplus1\);同理枚举\(A_k\)的第\(k\)位的\(c\),那么\(A_i\)的第\(k\)位是\(c\oplus1\)。(这么打累死我了...)

那么合法的\(A_i\)就是,第\(i\)位为\(a\)且第\(k\)位为\(c\oplus1\)的数字,\(A_j,A_k\)同理...

所以记\(cnt[i][j][a][b]\)表示第\(i\)位为\(a\),第\(j\)位为\(b\)的\(A_x\)有多少个,乘起来就OK了。

预处理\(cnt\)的复杂度是\(O(n\log^2n)\),常数很小。最后求和的复杂度是\(O(2^3\log^3n)\)。

答案最后除个\(6\)。


//97ms	1892KB
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define mod 998244353
#define inv6 166374059
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=31; int cnt[N][N][2][2],pw[N<<2];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline int Calc(int i,int j,int x,int y)
{
if(i>j) std::swap(i,j), std::swap(x,y);
return cnt[i][j][x][y];
} int main()
{
int n=read();
for(int i=1; i<=n; ++i)
{
int x=read();
for(int a=0; a<N; ++a)
for(int b=a; b<N; ++b) ++cnt[a][b][x>>a&1][x>>b&1];
}
pw[0]=1;
for(int i=1; i<90; ++i) pw[i]=pw[i-1]<<1, pw[i]>=mod&&(pw[i]-=mod);
LL ans=0;
for(int i=0; i<N; ++i)
for(int j=0; j<N; ++j)
for(int k=0; k<N; ++k)
for(int a=0; a<2; ++a)
for(int b=0; b<2; ++b)
for(int c=0; c<2; ++c)
ans+=1ll*pw[i+j+k]*Calc(i,k,a,c^1)%mod*Calc(i,j,a^1,b)%mod*Calc(j,k,b^1,c)%mod;
printf("%lld\n",ans%mod*inv6%mod); return 0;
}

牛客国庆集训派对Day4.B.异或求和(按位统计)的更多相关文章

  1. 牛客国庆集训派对Day4 J-寻找复读机

    链接:https://www.nowcoder.com/acm/contest/204/J 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  2. 牛客国庆集训派对Day4 I-连通块计数(思维,组合数学)

    链接:https://www.nowcoder.com/acm/contest/204/I 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

  3. 2018 牛客国庆集训派对Day4 - H 树链博弈

    链接:https://ac.nowcoder.com/acm/contest/204/H来源:牛客网 题目描述 给定一棵 n 个点的树,其中 1 号结点是根,每个结点要么是黑色要么是白色 现在小 Bo ...

  4. 牛客国庆集训派对Day4 Solution

    A    深度学习 puts(n) #include <bits/stdc++.h> using namespace std; int main() { double n; while ( ...

  5. 线性基求交(2019牛客国庆集训派对day4)

    题意:https://ac.nowcoder.com/acm/contest/1109/C 问你有几个x满足A,B集合都能XOR出x. 思路: 就是线性基求交后,有几个基就是2^几次方. #defin ...

  6. 牛客国庆集训派对Day6 A Birthday 费用流

    牛客国庆集训派对Day6 A Birthday:https://www.nowcoder.com/acm/contest/206/A 题意: 恬恬的生日临近了.宇扬给她准备了一个蛋糕. 正如往常一样, ...

  7. 2019牛客国庆集训派对day5

    2019牛客国庆集训派对day5 I.Strange Prime 题意 \(P=1e10+19\),求\(\sum x[i] mod P = 0\)的方案数,其中\(0 \leq x[i] < ...

  8. 2019 牛客国庆集训派对day1-C Distinct Substrings(exkmp+概率)

    链接:https://ac.nowcoder.com/acm/contest/1099/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  9. 牛客国庆集训派对Day1 L-New Game!(最短路)

    链接:https://www.nowcoder.com/acm/contest/201/L 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 1048576K,其他语言20 ...

随机推荐

  1. 常见的排序算法(直接插入&选择排序&二分查找排序)

    1.直接插入排序算法 源码: package com.DiYiZhang;/* 插入排序算法 * 如下进行的是插入,排序算法*/ public class InsertionSort {    pub ...

  2. SSM文件下载

    SSM框架文件下载比文件上传稍微麻烦一点,但这次还是写成最简朴的形式,哈哈~如下 参考:http://blog.csdn.net/lcx556224523/article/details/702076 ...

  3. 步步为营102-Css样式加个版本

    背景:当系统发布后修改了css样式,由于浏览器有缓存,所以会造成css样式无效.可通过在css中添加版本号来解决 1 修改css引用 <link rel="stylesheet&quo ...

  4. Node 杂技

    1.关于require 当文件夹a中含有index.js时,在b.js中如果有require("文件夹a的路径"),则将会自动执行index.js的语句

  5. 如何区分oracle服务器、oracle客户端、plsql?

    大家在安装oracle数据库的时候,是不是有很多区分不清的概念,以至于束手无策呢?现在有一个问题,就是怎么区分oracle服务器.oracle客户端.plsql三者的概念?我想,新手在安装的时候可能会 ...

  6. python多线程之t.setDaemon(True) 和 t.join()

    0.目录 1.参考2.结论    (1)通过 t.setDaemon(True) 将子线程设置为守护进程(默认False),主线程代码执行完毕后,python程序退出,无需理会守护子线程的状态.    ...

  7. centos7 查看ip地址

    命令: ip  address 简写ip  a 过滤出来某个网卡的ip: ip a show ens33 |awk -F ' ' 'NR==3{print$2}'|cut -d / -f1

  8. day9.初始函数练习题

    1.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. def new(args): a = [] for I in range(1,len(args),2) ...

  9. Python 实现红绿灯

    一.通过Event来实现两个或多个线程间的交互,下面是一个红绿灯的例子,即起动一个线程做交通指挥信号灯,一个线程做车辆,车辆行驶按红灯停,绿灯行的规则. #!/usr/bin/python # -*- ...

  10. PHP的swoole框架/扩展socket聊天示例

    PHP代码文件名 chat.php <?php //创建websocket服务器对象,监听0.0.0.0:9502端口 $ws = new swoole_websocket_server(&qu ...