设:

  sw[i]为1..i的w之和

  sd[i]为1到i的距离

  cost[i]为把第一个锯木厂建在i带来的花费

  all[i,j]为把i..j所有木头运到j所需要的花费

所以$all[i,j]=cost[j]-cost[i-1]-sw[i-1]*(sd[j]-sd[i-1])$

我们设第2个锯木厂建在i所带来的最小花费为f[i],则$f[i]=min\{cost[j]+all[j+1,i]+all[j+1,n+1]\}$

把all化掉,最终变成$f[i]=min\{cost[n+1]-sw[j]*(sd[i]-sd[j])-sw[i]*(sd[n+1]-sd[i])\}$

这样的话,如果直接做,复杂度是$O(n^2)$的

考虑优化,我们尝试比较在i固定时,f[j1]和f[j2]的值(j1<j2),$f[j1]-f[j2]=sw[j2]*(sd[i]-sd[j2])-sw[j1]*(sd[i]-sd[j1])$

先假设$f[j1]-f[j2]<0$,也就是j1是较优解

那么可以得到$\frac{sw[j1]*sd[j1]-sw[j2]*sd[j2]}{sw[j1]-sw[j2]}>sd[i]$

发现右端随i单增,而且左端呈现斜率的形式

那么也就是说,如果在某次i++以后,某两个j1,j2的斜率<sd[i],就可以确定j1永远不会是最优解了

那么可以维护一个队列,保证j1<j2<j3<... ,而且j1j2 ,j2j3 ,j3j4两两间的斜率递增

这样在每次i++的时候,先从队头向后把斜率<sd[i]的踢掉,之后的队头就是这次i的最优值

然后在统计完i的答案以后,i也可以作为第一个伐木厂了,就把它按照性质从队尾插进去

  也就是说,对于队尾的两个元素t-1和t,若t.i间斜率>t-1.t间斜率,直接把i插到队尾;

    若不是,则踢掉t然后继续做(此时的t绝对不会是最优解了,因为t-1与i间斜率<t-1与t间斜率,则要么t-1比t和i都优,要么sd[i]先超过t-1与i间的斜率,然后i会优于t-1和t)

队列里只剩一个点的话就谈不来斜率了..就不做了...

然后做的时候可以把比较斜率的除法改成乘法,防止出锅

每个点最多进队一次,出队一次,所以复杂度是O(n)的

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#include<ctime>
#define LL long long int
using namespace std;
const int maxn=; LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,w[maxn],d[maxn];
LL sw[maxn],sd[maxn],cost;
int q[maxn],head,tail; inline bool judge1(int j1,int j2,int i){return sw[j1]*sd[j1]-sw[j2]*sd[j2]<sd[i]*(sw[j1]-sw[j2]);}
inline bool judge2(int j1,int j2,int j3){return (sw[j1]*sd[j1]-sw[j2]*sd[j2])*(sw[j2]-sw[j3])<(sw[j2]*sd[j2]-sw[j3]*sd[j3])*(sw[j1]-sw[j2]);}
inline int get(int i,int j){return cost-sw[j]*(sd[i]-sd[j])-sw[i]*(sd[N+]-sd[i]);} int main(){
int i,j,k;
N=rd();
for(i=;i<=N;i++){
w[i]=rd(),d[i]=rd();
sw[i]=sw[i-]+w[i];sd[i]=sd[i-]+d[i-];
cost+=sw[i-]*d[i-];
}cost+=sw[N]*d[N];sd[N+]=sd[N]+d[N];
head=tail=;q[]=;
int ans=2e9+;
for(i=;i<=N;i++){
while(head<tail&&(!judge1(q[head],q[head+],i))) head++;
ans=min(ans,get(i,q[head]));
while(tail>head&&(!judge2(q[tail-],q[tail],i))) tail--;
q[++tail]=i;
}printf("%d\n",ans); return ;
}

luogu4360 锯木厂选址 (斜率优化dp)的更多相关文章

  1. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  2. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  3. 【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)

    [BZOJ2684][CEOI2004]锯木厂选址(斜率优化,动态规划) 题面 万恶的BZOJ因为权限题的原因而做不了... 我要良心的提供题面 Description 从山顶上到山底下沿着一条直线种 ...

  4. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  5. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  6. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  7. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  8. [BSOJ2684]锯木厂选址(斜率优化)

    Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂.木材只能按照一个方向运输:朝山下运.山脚下有一个锯木厂 ...

  9. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

随机推荐

  1. ngx_lua 模块

    ngx_lua模块的原理: 1.每个worker(工作进程)创建一个Lua VM,worker内所有协程共享VM:2.将Nginx I/O原语封装后注入 Lua VM,允许Lua代码直接访问:3.每个 ...

  2. maven 第一个Web项目——HelloWorld

    1.安装Maven,具体步骤,参照博客[maven的安装与配置]http://www.cnblogs.com/dyh004/p/8523260.html 2.配置阿里云为Maven中央仓库,具体步骤, ...

  3. 后台跑包方法 断开ssh程序也能继续执行的方法screen命令

    aircrack-ng -w 字典路径 握手包路径 screen -S 001创建会话 screen -ls  列出窗口列表 screen -r 5位数字  进入会话指令 如果会话恢复不了,则是有可能 ...

  4. 基于 CentOS 搭建 FTP 文件服务

    https://www.linuxidc.com/Linux/2017-11/148518.htm

  5. linux alias 别名设置【转载】

    功能说明:设置指令的别名. 语 法:alias[别名]=[指令名称] 形如: alias cp=“cp -i” : 补充说明:用户可利用alias,自定指令的别名.若仅输入alias,则可列出目前所有 ...

  6. E. Train Hard, Win Easy

    链接 [http://codeforces.com/contest/1043/problem/E] 题意 有n个人,每个人都有做出a,b题的分数,xi,yi,但是有些人是不能组队的,问你每个人和其他能 ...

  7. #个人博客作业week2——关于代码规范的个人观点

    对于这一讨论的前提我们首先要知道什么是代码规范. 在这个问题上我同意一篇参考文章的观点——代码规范不仅只编码风格.编码风格仅是代码规范的一个方面,除了编码风格,代码规范还包括函数返回值等其他方面.在我 ...

  8. 个人博客week2

    1. 是否需要有代码规范 对于是否需要有代码规范,请考虑下列论点并反驳/支持: 这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 我是个艺术家,手艺人,我有自己的规 ...

  9. mapreduce 中 map数量与文件大小的关系

    学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小 ...

  10. Timer定时执行

    //定时器 public void timeTask(String hh,int n) {//hh="8:30:00",n=12 Timer timer = new Timer() ...