Transportation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3045    Accepted Submission(s): 1318

Problem Description
There are N cities, and M directed roads connecting them. Now you want to transport K units of goods from city 1 to city N. There are many robbers on the road, so you must be very careful. The more goods you carry, the more dangerous it is. To be more specific, for each road i, there is a coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely. 
 
Input
There are several test cases. The first line of each case contains three integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0 <= K <= 100). Then M lines followed, each contains four integers (ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
 
Output
Output one line for each test case, indicating the minimum cost. If it is impossible to transport all the K units of goods, output -1.

 
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
 
Sample Output
4
-1
3
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  3661 3664 3665 3669 3668 
 
题意:求从1运送K个货物到N最少花费,每条边有一个运送上限,运送费用为所有边x*x*w的和,其中x为这条边的运送货物量,w为价格。
思路:最小费用流。但是费用不是与货物成正比,而是与货物的平方成正比,所以不能直接跑最小费用最大流,最后用费用*流量*流量,所以需要建立新的模型。当流量为1是,费用为w,流量为2是,费用是4w,但流量为3时,费用是9w......。所以,可以建立一个这样的模型,跑1流量的花费为w,跑2流量的花费为4w,跑3流量的花费为9w,可以这样建立,直接将容量c的边拆成c条容量为1的边,每条边的费用不一样才能满足要求,费用分别为为w,3w,5w.....,这样的话就会使得满足费用与流量的平方成正比。
代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define PI acos(-1.0)
const int maxn=1e3+,maxm=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e13+;
struct edge
{
int from,to;
ll c,w;
};
int n;
vector<edge>es;
vector<int>G[maxn];
ll dist[maxn];
int pre[maxn];
inline void addedge(int u,int v,ll c,ll w)
{
es.push_back((edge)
{
u,v,c,w
});
es.push_back((edge)
{
v,u,,-w
});
int x=es.size();
G[u].push_back(x-);
G[v].push_back(x-);
} bool spfa(int s,int t)
{
static std::queue<int> q;
static bool inq[maxn];
for(int i=; i<=n+; i++) dist[i]=INF,inq[i]=false;
pre[s]=-;
dist[s]=;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=false;
for(int i=; i<G[u].size(); i++)
{
edge e=es[G[u][i]];
if(e.c&&dist[e.to]>dist[u]+e.w)
{
pre[e.to]=G[u][i];
dist[e.to]=dist[u]+e.w;
if(!inq[e.to]) q.push(e.to),inq[e.to]=true;
}
}
}
return dist[t]<inf;
} void dinic(int s,int t,ll f)
{
ll flow=,cost=;
while(spfa(s,t))
{
ll d=f;
for(int i=t; i!=s; i=es[pre[i]].from)
d=min(d,es[pre[i]].c);
f-=d;
flow+=d;
cost+=d*dist[t];
for(int i=t; i!=s; i=es[pre[i]].from)
{
es[pre[i]].c-=d;
es[pre[i]^].c+=d;
}
if(f<=) break;
}
if(f) puts("-1");
else printf("%lld\n",cost);
} int main()
{
int m;
ll k;
while(~scanf("%d%d%lld",&n,&m,&k))
{
for(int i=; i<=m; i++)
{
int u,v;
ll c,w;
scanf("%d%d%lld%lld",&u,&v,&w,&c);
for(ll t=; t<=c; t++)
addedge(u,v,1LL,(t*t-(t-)*(t-))*w);
}
dinic(,n,k);
es.clear();
for(int i=; i<=n+; i++) G[i].clear();
}
return ;
}

最小费用流

HDU 3667.Transportation 最小费用流的更多相关文章

  1. HDU 3667 Transportation(网络流之费用流)

    题目地址:HDU 3667 这题的建图真是巧妙...为了保证流量正好达到k.须要让每一次增广到的流量都是1,这就须要把每一条边的流量都是1才行.可是每条边的流量并非1,该怎么办呢.这个时候能够拆边,反 ...

  2. hdu 3667 拆边加最小费用流

    Transportation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. HDU 3667 费用流 拆边 Transportation

    题意: 有N个城市,M条有向道路,要从1号城市运送K个货物到N号城市. 每条有向道路<u, v>运送费用和运送量的平方成正比,系数为ai 而且每条路最多运送Ci个货物,求最小费用. 分析: ...

  4. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  5. HDU 3667

    http://acm.hdu.edu.cn/showproblem.php?pid=3667 最小费用最大流 本题流量和费用不是线性关系,fee=a*flow*flow,所以常规套模板spfa无法得到 ...

  6. hdu 3667(最小费用最大流+拆边)

    Transportation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. HDU3667 Transportation —— 最小费用流(费用与流量平方成正比)

    题目链接:https://vjudge.net/problem/HDU-3667 Transportation Time Limit: 2000/1000 MS (Java/Others)    Me ...

  8. HDU 3667 费用流(拆边)

    题意:有n个城市(1~n),m条有向边:有k件货物要从1运到n,每条边最多能运c件货物,每条边有一个危险系数ai,经过这条路的费用需要ai*x2(x为货物的数量),问所有货物安全到达的费用. 思路:c ...

  9. HDU Destroy Transportation system(有上下界的可行流)

    前几天正看着网络流,也正研究着一个有上下界的网络流的问题,查看了很多博客,觉得下面这篇概括的还是相当精确的: http://blog.csdn.net/leolin_/article/details/ ...

随机推荐

  1. delphi 下载

    最新(更多)内容,请到  http://www.cnblogs.com/key-ok/p/3465486.html  Borland Pascal v7.1 (13.89 Mb)  Delphi 1 ...

  2. 爬虫-day01-基础知识

    '''爬虫的构成下载器: 抓取页面 urllib equests selenium + webdriver解析器: 解释并提取页面元素 BeautifulSoup4 PyQuery Xpath Reg ...

  3. perl二维数组

    [转载]出处:http://www.cnblogs.com/visayafan/ 1 数组与引用 2 声明的区别 3 访问的区别 4 添加行元素 5 添加列元素 6 访问与打印 6.1 运算符优先级 ...

  4. 利用Kettle 从Excel中抽取数据写入SQLite

    SQLite作为一种数据库可以配置为Kettle的数据输入和输出,这个例子是从Excel中抽取数据然后写入到SQLite中 配置测试并成功后如下 下面是配置步骤: Excel输入配置 sqlite配置 ...

  5. (转)cenntos 安装mongodb

    转自 https://www.cnblogs.com/layezi/p/7290082.html 安装前注意: 此教程是通过yum安装的.仅限64位centos系统 安装步骤: 1.创建仓库文件: 1 ...

  6. 异常处理,MD5

    异常处理. try except raise try: 代码 except 异常类: 除了错, 如何处理异常 except 异常类: 除了错, 如何处理异常 except 异常类: 除了错, 如何处理 ...

  7. Github 大牛封装 Python 代码,实现自动发送邮件只需三行代码

    *注意:全文代码可左右滑动观看 在运维开发中,使用 Python 发送邮件是一个非常常见的应用场景.今天一起来探讨一下,GitHub 的大牛门是如何使用 Python 封装发送邮件代码的. 一般发邮件 ...

  8. Axiso解决跨域访问(...XMLHttpRequest cannot load http://xxx.xxx No 'Access-Control-Allow-Origin'...)

    直接访问如下:this.$axios.get("http://localhost:8089/yc/demo").then(res=>{    console.log(res) ...

  9. atom常用插件

    汉化 simplified-chinese-menureact atom-react-snippets-0.5.0polymer atom-polymer-0.13.0polymer Atom-Pol ...

  10. JavaScript倒计时实现

    /** * 倒计时函数 * @param {String}} endTime 终止时间戳 */ const countDown = (endTime, callback) => { const ...