把每个人的监视范围看成点,相邻的两个监视范围连边,那么跑一遍最短路就可以了(事实上边权都为1可以直接bfs)。显然存在最优路线没有某个时刻同时被多于两人监视,要到达另一个区域的话完全可以经过分界线而不是和其他区域的交点(若两个区域只有一个交点的话是不能直接到达的),总之就是说不用特判同时被多人监视的情况。

  现在问题是怎么求出哪些监视范围相邻。考虑对于某个人的监视范围求出所有与它相邻的。两个监视范围的公共边是这两个人连线的中垂线,把这些线画出来可以发现求个半平面交就好了。注意线要求在矩形范围内。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 610
#define vector dot
int T,n,p[N],d[N],queue[N],cnt;
bool flag[N];
const double eps=1E-;
struct data{int to,nxt;
}edge[N*N];
struct dot
{
double x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
double operator *(const vector&a) const
{
return x*a.y-y*a.x;
}
vector operator *(const double a) const
{
return (vector){a*x,a*y};
}
double len()
{
return sqrt(x*x+y*y);
}
vector rotate()
{
return (vector){-y,x};
}
}a[N],P[N];
struct line
{
dot a;vector p;int i;
bool operator <(const line&a) const
{
return atan2(p.x,p.y)>atan2(a.p.x,a.p.y);
}
}q[N],Q[N];
void addedge(int x,int y){cnt++;edge[cnt].to=y,edge[cnt].nxt=p[x],p[x]=cnt;}
bool onright(line x,dot y)
{
return (y-x.a)*x.p>=;
}
dot cross(line x,line y)
{
return y.a+y.p*(x.p*(x.a-y.a)/(x.p*y.p));
}
int bfs(int S)
{
memset(d,,sizeof(d));
int head=,tail=;queue[]=S;d[S]=;
do
{
int x=queue[++head];
for (int i=p[x];i;i=edge[i].nxt)
if (d[x]+<d[edge[i].to])
{
d[edge[i].to]=d[x]+;
queue[++tail]=edge[i].to;
if (!edge[i].to) return d[edge[i].to];
}
}while (head<tail);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("3297.in","r",stdin);
freopen("3297.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
T=read();
while (T--)
{
n=read();
int r=read(),c=read();
dot s;s.x=read(),s.y=read();
for (int i=;i<=n;i++)
a[i].x=read(),a[i].y=read();
int S;
double dis=(a[]-s).len();
for (int i=;i<=n;i++) dis=min(dis,(a[i]-s).len());
for (int i=;i<=n;i++) if (fabs(dis-(a[i]-s).len())<eps) S=i;
cnt=;
memset(p,,sizeof(p));
for (int j=;j<=n;j++)
{
int t=;
for (int i=;i<=n;i++)
if (i!=j) q[++t]=(line){(a[i]+a[j])*0.5,(a[i]-a[j]).rotate(),i};
q[++t]=(line){(dot){,},(vector){,},};
q[++t]=(line){(dot){r,},(vector){,},};
q[++t]=(line){(dot){r,c},(vector){-,},};
q[++t]=(line){(dot){,c},(vector){,-},};
sort(q+,q+t+);
int head=,tail=;Q[]=q[];
for (int i=;i<=t;i++)
{
while (head<tail&&onright(q[i],P[tail])) tail--;
while (head<tail&&onright(q[i],P[head+])) head++;
Q[++tail]=q[i];
if (fabs(Q[tail-].p*Q[tail].p)<eps)
{
tail--;
if (onright(q[i],Q[tail].a)) Q[tail]=q[i];
}
if (head<tail) P[tail]=cross(Q[tail],Q[tail-]);
}
while (head<tail&&onright(Q[head],P[tail])) tail--;
P[head]=cross(Q[head],Q[tail]);
for (int i=head;i<=tail;i++) addedge(j,Q[i].i);
}
printf("%d\n",bfs(S));
}
return ;
}

Luogu3297 SDOI2013逃考(半平面交+最短路)的更多相关文章

  1. BZOJ3199 SDOI2013 逃考 半平面交、最短路

    传送门 如果我们对于每一个点能找到与其相邻的点(即不经过其他点监视范围能够直接到达其监视范围的点)和是否直接到达边界,就可以直接BFS求最短路求出答案. 所以当前最重要的问题是如何找到对于每一个点相邻 ...

  2. 洛谷 P3297 [SDOI2013]逃考 解题报告

    P3297 [SDOI2013]逃考 题意 给一个平面矩形,里面有一些有标号点,有一个是人物点,人物点会被最近的其他点控制,人物点要走出矩形,求人物点最少被几个点控制过. 保证一开始只被一个点控制,没 ...

  3. luogu P3297 [SDOI2013]逃考

    传送门 gugugu 首先每个人管理的区域是一个多边形,并且整个矩形是被这样的多边形填满的.现在的问题是求一条经过多边形最少的路径到达边界,这个可以最短路. 现在的问题是建图,显然我们应该给相邻的多边 ...

  4. P3297 [SDOI2013]逃考

    传送门 完全看不出这思路是怎么来的-- 首先对于两个亲戚,他们监视范围的边界是他们连线的中垂线.那么对于一个亲戚来说它能监视的范围就是所有的中垂线形成的半平面交 然后如果某两个亲戚的监视范围有公共边, ...

  5. [JZOJ3297] 【SDOI2013】逃考

    题目 我发现我现在连题面都懒得复制粘贴了-- 题目大意 在一个矩形中有一堆点,这堆点按照以下规则将矩形瓜分成一堆块: 对于每个坐标,它属于离它最近的点的块. 一个人从某个坐标出发到矩形外面,求经过的最 ...

  6. 【JZOJ3297】【SDOI2013】逃考(escape)

    Mission 高考又来了,对于不认真读书的来讲真不是个好消息.为了小杨能在家里认真读书,他的亲戚决定驻扎在他的家里监督他学习,有爷爷奶奶.外公外婆.大舅.大嫂.阿姨-- 小杨实在是忍无可忍了,这种生 ...

  7. 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)

    传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...

  8. 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)

    按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...

  9. 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 959  Solved: 489[Submit][Status] ...

随机推荐

  1. 运行Android Studio自带模拟器报:Guest isn't online after 7 second...

    今天在运行Android Studio自带的手机模拟器时,出现如下异常情况 : 解决办法: 1.打开Android Virtue Device Manager,点击编辑选项 2.点击show Adva ...

  2. 分析网络流量Capsa笔记

    Capsa是一款网络分析仪,允许您监控网络流量,解决网络问题并分析数据包.通过提供生动的图表,通过设计良好的GUI提供丰富的统计信息和实时警报,Capsa可让IT管理员实时识别,诊断和解决有线和无线网 ...

  3. 使用Quartz实现定时任务

    一:Quertz的用途 Quertz是一个开源的作业任务调度框架,他可以完成像JavaScript定时器类式的功能,其实Java中Timer也可实现部分功能,但相比Quertz还是略逊一筹,本人这次需 ...

  4. flask-sqlalchemy组件

    一.简介 flask本身没有内置orm框架,需要依赖第三方模块,这里介绍flask-sqlalchemy,而flask-sqlalchemy是一个flask的扩展,本质上是对sqlalchemy的进一 ...

  5. [Oracle]如何查看 10046 trace 中的 tim= ... 的具体时刻

    可以在  Linux 下,用下列方式: 如10046 trace 文件中如果有如下的内容:... tim = 1503032923 可以用 date 命令加 option 来看它的时刻: date - ...

  6. subprocess.Popen指令包含中文导致乱码问题解决

    其实解决起来非常简单,如果了解到Windows中文系统编码为GB2312的话 只需将你包含中文的指令字符串编码为GB2312即可 cmd = u'cd 我的文档' cmd.encode('gb2312 ...

  7. [UWP 自定义控件]了解模板化控件(6):使用附加属性

    1. 基本需求 之前的ContentView2添加了PointerOver等效果,和TextBox等本来就有Header的控件放在一起反而变得鹤立鸡群. 为了解决这个问题,这次把ContentView ...

  8. MySQL数据库服务器(YUM)安装

    1. 概述2. 部署过程2.1 虚拟机console的NFS服务端配置2.2 虚拟机node15的NFS客户端配置2.3 虚拟机安装MySQL环境2.4 配置MySQL3. 错误及解决3.1 启动失败 ...

  9. ASP.NET MVC5+EF6+EasyUI 后台管理系统(63)-WebApi与Unity注入

    系列目录 前言: 有时候我们系统需要开放数据给手机App端或其他移动设备,不得不说Asp.net WebApi是目前首选 本节记录Asp.net MVC WebApi怎么利用Unity注入.系列开头已 ...

  10. OSGI的WEB开发环境搭建

    第一步,搭建OSGI环境: 打开eclipse,点击run->run configration..,配置如下,点击run. 运行结果如下图所示:说明OSGI环境搭建完毕. 第二步:搭建基于OSG ...