Sightseeing tour HDU - 1956(混合欧拉回路)
题意:
有n个点,m条边,其中有单向边和双向边,求是否存在欧拉回路
解析:
刚开始想。。。判断一下每个点的度数不就好了。。。emm。。还是年轻啊。。
判断是解决不了问题的,因为可能会有某两个点冲突,比如说一个点出度比入度大1,但它只有一条无向边,所以这条无向边要变成入边,但这条无向边的v点也是
出度比入度大1,也是需要一条入边,所以这样就会冲突,如果直接判断的话不会判断出来,所以就用到了网络流,
设想一下,我们把这条无向边的容量设为1,那么如果用了这条边,容量就会为0,所以不会重复使用,且不产生冲突
具体实现:
不是我懒。。。是人家讲的真的很好嘛。。。
https://blog.csdn.net/wall_f/article/details/8237520
1、另x = |入度-出度|/2;对于不同的点有不同的x值,这个x值代表它们在邻接表中相应调整x条就能让出度等于入度。
2、以把图中的点转换为一个二分图,每个点的x值就是它们的点权。
3、置源点S向所有出度>入度的点连边;设置汇点T,所有入度大于出度的点连边,将各自的点权转换为边权。
4、最后将原图中所有暂时定向的无向边加上一个1的容量,方向不变,而有向边不能改变方向,不需连边。
可以发现,从源点S出发的一个单位流将会一个“无向边”的容量变为0,使得两端的点权各自减1,其实这就是在模拟一次对无向边方向的调整。当把图建好后,依靠最大流性质可以最大可能地无冲突调整边的方向,并最终使得每个点的点容量都达到满流。
最后,还要对那些图中出度等于入度的点做适当分析,它们作为一个“中间点”,由于流平衡性质,不会留下任何流量值,对于那些真正需要调整的点不会带来任何影响。
最后,如何得到答案?那就是检查从源点出发的每条边是否都满流,如果有一条边没有满流,说明有一个点没有调整到入度等于出度,于是整个图不存在欧拉回路。
这题保证了只有一个连通块。。虽然我还判断了一下。。。
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int n, m, s, t, cnt;
int f[maxn], deg[maxn], in[maxn], out[maxn], vis[maxn];
int d[maxn], head[maxn], cur[maxn];
set<int> ss; int find(int x)
{
return f[x] == x ? x : (f[x] = find(f[x]));
} void init()
{
for(int i = ; i < maxn; i++) f[i] = i;
mem(deg, );
mem(in, );
mem(head, -);
mem(out, );
cnt = ;
// mem(vis, 0);
ss.clear();
} struct edge
{
int u, v, c, next;
}Edge[maxn]; void add_(int u, int v, int c)
{
Edge[cnt].u = u;
Edge[cnt].v = v;
Edge[cnt].c = c;
Edge[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = Edge[i].next)
{
edge e = Edge[i];
if(!d[e.v] && e.c > )
{
d[e.v] = d[e.u] + ;
Q.push(e.v);
if(e.v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = Edge[i].next)
{
edge e = Edge[i];
if(d[e.v] == d[u] + && e.c > )
{
int V = dfs(e.v, min(cap, e.c));
Edge[i].c -= V;
Edge[i^].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic(int u)
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof(head));
ans += dfs(u, INF);
}
return ans;
} int main()
{
int T;
cin >> T;
while(T--)
{
int u, v, w;
cin >> n >> m;
init();
s = , t = n + ;
for(int i = ; i <= m; i++)
{
cin >> u >> v >> w;
in[v]++, out[u]++;
if(u != v && w == ) add(u, v, );
int l = find(u);
int r = find(v);
if(l != r) f[l] = r;
}
int flag = , m_sum = ;
for(int i = ; i <= n; i++)
{
int x = find(i);
ss.insert(x);
if(abs(out[i] - in[i]) & )
{
flag = ;
break;
}
if(out[i] > in[i]) add(s, i, (out[i] - in[i]) / ), m_sum += (out[i] - in[i]) / ;
else if(in[i] > out[i]) add(i, t, (in[i] - out[i]) / ); }
if(flag || ss.size() > )
{
cout << "impossible" << endl;
continue;
}
if(m_sum == Dinic(s))
cout << "possible" << endl;
else
cout << "impossible" << endl; } return ;
}
Sightseeing tour HDU - 1956(混合欧拉回路)的更多相关文章
- TZOJ 2099 Sightseeing tour(网络流判混合图欧拉回路)
描述 The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that to ...
- hdu 1956(混合图的欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1956 思路:先将无向边定向,比如1<->3,可以定它的方向为1->3,1的出度++, ...
- POJ1637 Sightseeing tour(判定混合图欧拉回路)
有向连通图存在欧拉回路的充要条件是所有点入度=出度. 首先随便给定所有无向边一个方向(不妨直接是u->v方向),记录所有点的度(记:度=入度-出度). 这时如果有点的度不等于0,那么就不存在欧拉 ...
- POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)
Sightseeing tour Time Limit: 1000MS Me ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- Sightseeing tour 【混合图欧拉回路】
题目链接:http://poj.org/problem?id=1637 Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total ...
- POJ1637:Sightseeing tour(混合图的欧拉回路)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10581 Accepted: 4466 ...
- POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tou ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
随机推荐
- c语言第三例
标准的输入输出函数: putchar(输出字符) getchar(获取输入字符) printf(格式输出) scanf(格式输入) puts(输出字符串) gets(获取输入字符串) #include ...
- ASP.NET Core读取AppSettings (转载)
今天在把之前一个ASP.NET MVC5的Demo项目重写成ASP.NET Core,发现原先我们一直用的ConfigurationManager.AppSettings[]读取Web.config中 ...
- Multiple “order by” in LINQ(转载)
问: I have two tables, movies and categories, and I get an ordered list by categoryID first and then ...
- 【LeetCode232】 Implement Queue using Stacks★
1.题目描述 2.思路 思路简单,这里用一个图来举例说明: 3.java代码 public class MyQueue { Stack<Integer> stack1=new Stack& ...
- 在属性property做一些简单的验证
开发C#的程序,写到属性property时,我们可以在Set方法中做一些简单的规则验证: 如下面,Insus.NET写一个Age属性,只允许用户输入10以内的数字: class AA { privat ...
- 【php增删改查实例】第十六节 - 用户新增
6.1工具栏 <div id="toolbar"> <a href="javascript:openDialog()" class=" ...
- CSharp 案例:用 Dynamic 来解决 DataTable 数值累加问题
需求说明 给定一个 DataTable,如果从中取出数值类型列的值并对其累加? 限制:不知该列是何种数值类型. 解决方案 1.将表转换为 IEnumerable<dynamic>,而后获取 ...
- Socket入门笔记 用TcpClient实现一个简易聊天室
效果 实现思路 使用TcpListener建一个服务器,接收所有客户端发送的消息,然后由服务器再发送到其他客户端 客户端使用TcpClient,发消息给服务器,接收服务器的消息,不和其他客户端直接交互 ...
- iphone忘记锁屏密码却记得appleID密码的不保存数据的刷机办法
请注意看清题目再看本文,另外一切后果博主不负任何责任.操作实现环境:原装数据线,拔掉sim卡昨天,iPhone6sp忘记密码被锁定,尝试通过找回手机抹除手机功能后,提示需要手机接入互联网才能实现,而我 ...
- 由一个“两次请求”引出的Web服务器跨域请求访问问题的解决方案
http://blog.csdn.net/cnhnnyzhy/article/details/53128179 (4)Access-Control-Max-Age 该字段可选,用来指定本次预检请求的有 ...