python 的 numpy 库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入 numpy 的包。

1.numpy 的导入和使用

from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。

2. 矩阵的创建

由一维或二维数据创建矩阵

from numpy import *;
a1=array([1,2,3]);
a1=mat(a1);

创建常见的矩阵

data1=mat(zeros((3,3)));
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((2,4)));
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(2,2));
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(10,size=(3,3)));
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(2,8,size=(2,5));
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(2,2,dtype=int));
#产生一个2*2的对角矩阵 a1=[1,2,3];
a2=mat(diag(a1));
#生成一个对角线为1、2、3的对角矩阵

3. 常见的矩阵运算

1. 矩阵相乘

a1=mat([1,2]);
a2=mat([[1],[2]]);
a3=a1*a2;
#1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵

2. 矩阵点乘

矩阵对应元素相乘

a1=mat([1,1]);
a2=mat([2,2]);
a3=multiply(a1,a2);

矩阵点乘

a1=mat([2,2]);
a2=a1*2;

3. 矩阵求逆,转置

矩阵求逆

a1=mat(eye(2,2)*0.5);
a2=a1.I;
#求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵

矩阵转置

a1=mat([[1,1],[0,0]]);
a2=a1.T;

4. 计算矩阵对应行列的最大、最小值、和。

a1=mat([[1,1],[2,3],[4,2]]);

计算每一列、行的和

a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵
a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵
a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值

计算最大、最小值和索引

a1.max();//计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
a2=max(a1[:,1]);//计算第二列的最大值,这里得到的是一个1*1的矩阵
a1[1,:].max();//计算第二行的最大值,这里得到的是一个一个数值 np.max(a1,0);//计算所有列的最大值,这里使用的是numpy中的max函数
np.max(a1,1);//计算所有行的最大值,这里得到是一个矩阵 np.argmax(a1,0);//计算所有列的最大值对应在该列中的索引
np.argmax(a1[1,:]);//计算第二行中最大值对应在改行的索引

5. 矩阵的分隔和合并 
矩阵的分隔,同列表和数组的分隔一致。

a=mat(ones((3,3)));
b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素

矩阵的合并

a=mat(ones((2,2)));
b=mat(eye(2));
c=vstack((a,b));//按列合并,即增加行数
d=hstack((a,b));//按行合并,即行数不变,扩展列数

4. 矩阵、列表、数组的转换

列表可以修改,并且列表中元素可以使不同类型的数据,如下:

l1=[[1],'hello',3];

numpy 中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:

a=array([[2],[1]]);
dimension=a.ndim;
m,n=a.shape;
number=a.size;//元素总个数
str=a.dtype;//元素的类型

numpy 中的矩阵也有与数组常见的几个属性。 
它们之间的转换:

a1=[[1,2],[3,2],[5,2]];//列表
a2=array(a1);//将列表转换成二维数组
a3=array(a1);//将列表转化成矩阵
a4=array(a3);//将矩阵转换成数组
a5=a3.tolist();//将矩阵转换成列表
a6=a2.tolist();//将数组转换成列表

这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过 tolist() 转换成列表是不相同的,需要做一些小小的修改。如下:

a1=[1,2,3];
a2=array(a1);
a3=mat(a1);
a4=a2.tolist();//这里得到的是[1,2,3]
a5=a3.tolist();//这里得到的是[[1,2,3]]
a6=(a4 == a5);//a6=False
a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]

矩阵转换成数值,存在以下一种情况:

dataMat=mat([1]);
val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型
												

python 常见矩阵运算的更多相关文章

  1. Python常见的错误汇总

    +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 错误: [错误分析]第二个参数必须为类,否则会报TypeError,所以正确的应 ...

  2. python常见排序算法解析

    python——常见排序算法解析   算法是程序员的灵魂. 下面的博文是我整理的感觉还不错的算法实现 原理的理解是最重要的,我会常回来看看,并坚持每天刷leetcode 本篇主要实现九(八)大排序算法 ...

  3. Python常见十六个错误集合,你知道那些?

    使用python会出现各种各样的错误,以下是Python常见的错误以及解决方法. 1.ValueError: 'Conv2d_1a_3×3' is not a valid scope name 这个是 ...

  4. Python 常见文件操作的函数示例(转)

    转自:http://www.cnblogs.com/txw1958/archive/2012/03/08/2385540.html # -*-coding:utf8 -*- ''''' Python常 ...

  5. 转 Python常见数据结构整理

    http://www.cnblogs.com/jeffwongishandsome/archive/2012/08/05/2623660.html Python常见数据结构整理 Python中常见的数 ...

  6. Python常见文件操作的函数示例

    # -*-coding:utf8 -*- ''''' Python常见文件操作示例 os.path 模块中的路径名访问函数 分隔 basename() 去掉目录路径, 返回文件名 dirname() ...

  7. 一文了解Python常见的序列化操作

    关于我 一个有思想的程序猿,终身学习实践者,目前在一个创业团队任team lead,技术栈涉及Android.Python.Java和Go,这个也是我们团队的主要技术栈. Github:https:/ ...

  8. 初学Python常见异常错误,总有一处你会遇到!

    初学Python常见错误 忘记写冒号 误用= 错误 缩紧 变量没有定义 中英文输入法导致的错误 不同数据类型的拼接 索引位置问题 使用字典中不存在的键 忘了括号 漏传参数 缺失依赖库 使用了pytho ...

  9. Python常见异常及常用单词翻译

    Python常见异常及常用单词意思 AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x IOError 输入/输出异常:基本上是无法打开文件 ImportE ...

随机推荐

  1. Android Color颜色代码

    常用颜色代码 <?xml version="1.0" encoding="utf-8"?> <resources> <color ...

  2. Flutter 安装

    都说程序猿学习是不分平台的,做了一辈子的Xaml,也想看看现在最牛逼的移动技术. 看了看Google 的Flutter,好像很牛逼,不怎么需要Android和IOS基础(应该还是要的), 不过现在是B ...

  3. eclipse下载教程

    Eclipse 是一个开放源代码的.基于 Java 的可扩展开发平台. Eclipse 是 Java 的集成开发环境(IDE),当然 Eclipse 也可以作为其他开发语言的集成开发环境,如C,C++ ...

  4. 外网访问局域网ip的方法

    https://jingyan.baidu.com/article/48b558e335e3ac7f39c09a59.html 步骤: 1.浏览器内输入:192.168.1.1进入路由器管理界面 2. ...

  5. ghostscript远程代码执行漏洞复现

    这两天网上ghostscript又又有漏洞信息了,但是没有poc,于是找找资料把今年8月21日的那个验证下 1.关于ghostscript Ghostscript是一套建基于Adobe.PostScr ...

  6. mobx 入门

    observable(可观察的数据) 数组 import { observable, isArrayLike } from 'mobx' const arr = observable(['a', 'b ...

  7. 17秋 软件工程 团队第五次作业 Alpha 测试报告

    用户反馈博客:17秋 软件工程 团队第五次作业 Alpha 用户反馈 团队项目软件的总体测试计划 测试模块: 用户登录 部门信息模块 活动模块 部员管理模块 短信通知模块 测试计划: 注:测试结果Y代 ...

  8. Tomcat 访问页面或服务器异常,请检查这些方面

    若还没有部署网站,请检查 防火墙是否关闭 数据库服务是否打开 浏览器访问的地址和端口是否正确 tomcat 配置文件中的端口是否发生冲突,换一个试试 若出现的是"拒绝连接",检查阿 ...

  9. jquery easyui datagrid js获取记录数 页数 当前页

    首先要吐槽的是 easyui竟然找不到未压缩的版本(1 也许它是藏在某个个几角旮旯; 2 压缩的版本想看懂? 大概你得在你脑袋上外接个CPU), 而且官方的文档简陋的不能再简陋了, 想实现个稍微复杂点 ...

  10. DP E - Cheapest Palindrome

    Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate ...