传送门

题意:给出一个$N$个节点、$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值。$N \leq 10000 , M \leq 50000 , Q \leq 30000$


很套路的题目,没什么好说的,最大生成树上倍增求一段以内的最短边,然后每一次询问跳$LCA$即可。

注意:图可能是不连通的,所以在跳$LCA$之前要判断一下是否在一个连通块内。

 #include<bits/stdc++.h>
 using namespace std;
 inline int read(){
     ;
     char c = getchar();
     while(!isdigit(c))  c = getchar();
     ) + (a << ) + (c ^ ') , c = getchar();
     return a;
 }
 vector < ] , w[];
 ][] , head , depth[] , father[] , dad[] , wei[];
 struct Edge{
     int start , end , w;
 }Ed[];
 bool cmpforEdge(Edge a , Edge b){return a.w > b.w;}
 int find(int a){return father[a] == a ? a : (father[a] = find(father[a]));}
 inline int min(int a , int b){return a < b ? a : b;}
 void LCA(int t , int pa){
     depth[t] = depth[dad[t] = pa] + ;
      ; i < tree[t].size() ; i++)
         if(!depth[tree[t][i]]){
             wei[tree[t][i]] = w[t][i];
             LCA(tree[t][i] , t);
         }
 }
 inline int goLCA(int a , int b){
     ;
     while(a != b)
         if(depth[a] > depth[b]){
             minN = min(minN , wei[a]);
             a = dad[a];
         }
         else{
             minN = min(minN , wei[b]);
             b = dad[b];
         }
     return minN;
 }
 int main(){
     int N = read() , M = read();
      ; i <= N ; i++)   father[i] = i;
      ; i < M ; i++)
         Ed[i].start = read() , Ed[i].end = read() , Ed[i].w = read();
     sort(Ed , Ed + M , cmpforEdge);
      ; i < M ; i++)
         if(find(Ed[i].start) - find(Ed[i].end)){
             father[find(Ed[i].start)] = find(Ed[i].end);
             tree[Ed[i].start].push_back(Ed[i].end);
             tree[Ed[i].end].push_back(Ed[i].start);
             w[Ed[i].start].push_back(Ed[i].w);
             w[Ed[i].end].push_back(Ed[i].w);
         }
     int num = read();
      ; i < num ; i++)  pro[i][] = read() , pro[i][] = read();
      ; i <= N ; i++)
         if(!depth[i]){
             head = ;
             LCA(i , );
              ; j < num ; j++)
                 ])
                     ]) == find(i) && find(pro[j][]) == find(i))
                         pro[j][] = goLCA(pro[j][] , pro[j][]);
                     ]) == find(i) || find(pro[j][]) == find(i))
                         pro[j][] = -;
         }
      ; i < num ; i++)  printf(]);
     ;
 }

Luogu1967 NOIP2013 货车运输 最大生成树、倍增的更多相关文章

  1. $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$

    $Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...

  2. 【NOIP2013】货车运输 最大生成树+倍增

    题目大意:给你一张n个点m条边的图,有q次询问,每次让你找出一条从x至y的路径,使得路径上经过的边的最小值最大,输出这个最大的最小值. 显然,经过的路径必然在这张图的最大生成树上. 我们求出这个图的最 ...

  3. TZOJ 4848 货车运输(最大生成树+倍增lca)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  4. [noip2013]货车运输(kruskal + 树上倍增)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  5. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  6. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  7. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  8. NOIP2013 货车运输

    3.货车运输 (truck.cpp/c/pas) [问题描述] A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货 ...

  9. Codevs3278[NOIP2013]货车运输

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond      题目描述 Description A 国有 ...

随机推荐

  1. 【读书笔记】iOS-流式音频与Pandora Radio之路

    复杂性是不可避免的,而且只会随时间增长,所以在增加特性时一定要为重构和代码简化留出时间.真正遇到问题这前先不要担心性能.iPhone非常强壮,你可能永远也不会遇到预想的性能问题. 能过互联网向一个设备 ...

  2. 【读书笔记】iOS-如何推销你的Web应用

    1,利用Beta测试来邀请测试者. 2,利用新闻发布. 3,创建Web应用的宣传网站. 4,使用邮件营销. 5,创建YouTube视频教程. 6,提交到苹果Web应用门户. 7,提交到其它Web应用门 ...

  3. vue.js及项目实战[笔记]— 04 axios

    一. axios 1. 基本使用 axios.method('url',[,...data],options) .then(function(res){ }) .catch(function(err) ...

  4. tfs 禁止多人签出

    好久没用tfs了,忘了怎么设置了,记录下 编辑----->高级

  5. Power BI 与 Azure Analysis Services 的数据关联:2、Azure Analysis Services与 本地版本的 SQL Analysis Services 连接

    Power BI 与 Azure  Analysis Services 的数据关联:2.Azure  Analysis Services与 本地版本的 SQL   Analysis Services ...

  6. EventBus结合rxjava2和retrofit2网络获取

    依赖: compile 'com.squareup.retrofit2:converter-gson:2.3.0'compile 'com.squareup.retrofit2:retrofit:2. ...

  7. Android View体系(一)视图坐标系

    前言 Android View体系是界面编程的核心,他的重要性不亚于Android四大组件,在这个系列中我会陆续讲到View坐标系.View的滑动.View的事件分发等文章来逐步介绍Android V ...

  8. 自定义合并列:el-table

    objectSpanMethod({ row, column, rowIndex, columnIndex }) {//合并规则 //当前行row.当前列column.当前行号rowIndex.当前列 ...

  9. P进制转Q进制

    // 对一个P进制的数,如果要转换成Q进制的数 // 1)将P进制数x转换成十进制数y int y=0,product=1;//product在循环中会不断成P,得到1.P^2..... while( ...

  10. ccf--20151203--画图

    本题思路如下: 题目和代码如下: 问题描述 试题编号: 201512-3 试题名称: 画图 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 用 ASCII 字符来画图是一件有趣 ...