传送门

题意:给出一个$N$个节点、$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值。$N \leq 10000 , M \leq 50000 , Q \leq 30000$


很套路的题目,没什么好说的,最大生成树上倍增求一段以内的最短边,然后每一次询问跳$LCA$即可。

注意:图可能是不连通的,所以在跳$LCA$之前要判断一下是否在一个连通块内。

 #include<bits/stdc++.h>
 using namespace std;
 inline int read(){
     ;
     char c = getchar();
     while(!isdigit(c))  c = getchar();
     ) + (a << ) + (c ^ ') , c = getchar();
     return a;
 }
 vector < ] , w[];
 ][] , head , depth[] , father[] , dad[] , wei[];
 struct Edge{
     int start , end , w;
 }Ed[];
 bool cmpforEdge(Edge a , Edge b){return a.w > b.w;}
 int find(int a){return father[a] == a ? a : (father[a] = find(father[a]));}
 inline int min(int a , int b){return a < b ? a : b;}
 void LCA(int t , int pa){
     depth[t] = depth[dad[t] = pa] + ;
      ; i < tree[t].size() ; i++)
         if(!depth[tree[t][i]]){
             wei[tree[t][i]] = w[t][i];
             LCA(tree[t][i] , t);
         }
 }
 inline int goLCA(int a , int b){
     ;
     while(a != b)
         if(depth[a] > depth[b]){
             minN = min(minN , wei[a]);
             a = dad[a];
         }
         else{
             minN = min(minN , wei[b]);
             b = dad[b];
         }
     return minN;
 }
 int main(){
     int N = read() , M = read();
      ; i <= N ; i++)   father[i] = i;
      ; i < M ; i++)
         Ed[i].start = read() , Ed[i].end = read() , Ed[i].w = read();
     sort(Ed , Ed + M , cmpforEdge);
      ; i < M ; i++)
         if(find(Ed[i].start) - find(Ed[i].end)){
             father[find(Ed[i].start)] = find(Ed[i].end);
             tree[Ed[i].start].push_back(Ed[i].end);
             tree[Ed[i].end].push_back(Ed[i].start);
             w[Ed[i].start].push_back(Ed[i].w);
             w[Ed[i].end].push_back(Ed[i].w);
         }
     int num = read();
      ; i < num ; i++)  pro[i][] = read() , pro[i][] = read();
      ; i <= N ; i++)
         if(!depth[i]){
             head = ;
             LCA(i , );
              ; j < num ; j++)
                 ])
                     ]) == find(i) && find(pro[j][]) == find(i))
                         pro[j][] = goLCA(pro[j][] , pro[j][]);
                     ]) == find(i) || find(pro[j][]) == find(i))
                         pro[j][] = -;
         }
      ; i < num ; i++)  printf(]);
     ;
 }

Luogu1967 NOIP2013 货车运输 最大生成树、倍增的更多相关文章

  1. $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$

    $Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...

  2. 【NOIP2013】货车运输 最大生成树+倍增

    题目大意:给你一张n个点m条边的图,有q次询问,每次让你找出一条从x至y的路径,使得路径上经过的边的最小值最大,输出这个最大的最小值. 显然,经过的路径必然在这张图的最大生成树上. 我们求出这个图的最 ...

  3. TZOJ 4848 货车运输(最大生成树+倍增lca)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  4. [noip2013]货车运输(kruskal + 树上倍增)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  5. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  6. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  7. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  8. NOIP2013 货车运输

    3.货车运输 (truck.cpp/c/pas) [问题描述] A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货 ...

  9. Codevs3278[NOIP2013]货车运输

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond      题目描述 Description A 国有 ...

随机推荐

  1. React 入门学习笔记整理(一)——搭建环境

    使用create-react-app脚手架搭建环境 1.安装node .软件下载地址:https://nodejs.org/en/,我下的推荐的版本. 安装之后测试是否安装成功.windows系统下, ...

  2. python自动化开发-7

    socket编程 Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对 ...

  3. Button's four click events

    第一种:内部类的方式 1 package com.example.phonedialer; 2 3 import com.example.click2.R; 4 5 import android.ne ...

  4. (后端)Java新人入职——配置环境及安装开发工具(完全)

    转自csdn:执笔记忆的空白 很多新人对于进入新公司,相关工具的安装和环境变量的设定很苦恼.又苦于没有完整的配置开发环境的资料,我这里写一篇操作步骤的案例, 至少让你能把开发工具安装起来,并实用起来, ...

  5. Python实现批量梯度下降算法

    # -*- coding: UTF-8 -*- import numpy as npimport math # 定义基础变量learning_rate = 0.1n_iterations = 1000 ...

  6. C# 异步编程3 TPL Task 异步程序开发

    .Net在Framework4.0中增加了任务并行库,对开发人员来说利用多核多线程CPU环境变得更加简单,TPL正符合我们本系列的技术需求.因TPL涉及内容较多,且本系列文章为异步程序开发,所以本文并 ...

  7. python第五十二天---第九周作业 类 Fabric 主机管理程序

    类 Fabric 主机管理程序开发:1. 运行程序列出主机组或者主机列表2. 选择指定主机或主机组3. 选择让主机或者主机组执行命令或者向其传输文件(上传/下载)4. 充分使用多线程或多进程5. 不同 ...

  8. 字符串相似度算法-LEVENSHTEIN DISTANCE算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  9. SQLite基本操作-----IOS(如有雷同,纯属巧合)

    一.常用方法 sqlite3          *db, 数据库句柄,跟文件句柄FILE很类似 sqlite3_stmt      *stmt, 这个相当于ODBC的Command对象,用于保存编译好 ...

  10. CRM项目之stark组件(1)

    admin组件 admin组件的简单使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以在项目的 settings.py ...