传送门

题意:给出一个$N$个节点、$M$条边的图,$Q$次询问,每一次询问两个点之间的所有可行路径中经过的边的边权的最小值中的最大值。$N \leq 10000 , M \leq 50000 , Q \leq 30000$


很套路的题目,没什么好说的,最大生成树上倍增求一段以内的最短边,然后每一次询问跳$LCA$即可。

注意:图可能是不连通的,所以在跳$LCA$之前要判断一下是否在一个连通块内。

 #include<bits/stdc++.h>
 using namespace std;
 inline int read(){
     ;
     char c = getchar();
     while(!isdigit(c))  c = getchar();
     ) + (a << ) + (c ^ ') , c = getchar();
     return a;
 }
 vector < ] , w[];
 ][] , head , depth[] , father[] , dad[] , wei[];
 struct Edge{
     int start , end , w;
 }Ed[];
 bool cmpforEdge(Edge a , Edge b){return a.w > b.w;}
 int find(int a){return father[a] == a ? a : (father[a] = find(father[a]));}
 inline int min(int a , int b){return a < b ? a : b;}
 void LCA(int t , int pa){
     depth[t] = depth[dad[t] = pa] + ;
      ; i < tree[t].size() ; i++)
         if(!depth[tree[t][i]]){
             wei[tree[t][i]] = w[t][i];
             LCA(tree[t][i] , t);
         }
 }
 inline int goLCA(int a , int b){
     ;
     while(a != b)
         if(depth[a] > depth[b]){
             minN = min(minN , wei[a]);
             a = dad[a];
         }
         else{
             minN = min(minN , wei[b]);
             b = dad[b];
         }
     return minN;
 }
 int main(){
     int N = read() , M = read();
      ; i <= N ; i++)   father[i] = i;
      ; i < M ; i++)
         Ed[i].start = read() , Ed[i].end = read() , Ed[i].w = read();
     sort(Ed , Ed + M , cmpforEdge);
      ; i < M ; i++)
         if(find(Ed[i].start) - find(Ed[i].end)){
             father[find(Ed[i].start)] = find(Ed[i].end);
             tree[Ed[i].start].push_back(Ed[i].end);
             tree[Ed[i].end].push_back(Ed[i].start);
             w[Ed[i].start].push_back(Ed[i].w);
             w[Ed[i].end].push_back(Ed[i].w);
         }
     int num = read();
      ; i < num ; i++)  pro[i][] = read() , pro[i][] = read();
      ; i <= N ; i++)
         if(!depth[i]){
             head = ;
             LCA(i , );
              ; j < num ; j++)
                 ])
                     ]) == find(i) && find(pro[j][]) == find(i))
                         pro[j][] = goLCA(pro[j][] , pro[j][]);
                     ]) == find(i) || find(pro[j][]) == find(i))
                         pro[j][] = -;
         }
      ; i < num ; i++)  printf(]);
     ;
 }

Luogu1967 NOIP2013 货车运输 最大生成树、倍增的更多相关文章

  1. $Noip2013/Luogu1967$ 货车运输 最大生成树+倍增$lca$

    $Luogu$ $Sol$ 首先当然是构建一棵最大生成树,然后对于一辆货车的起点和终点倍增跑$lca$更新答案就好.记得预处理倍增的时候不仅要处理走了$2^i$步后是那个点,还有这中间经过的路径权值的 ...

  2. 【NOIP2013】货车运输 最大生成树+倍增

    题目大意:给你一张n个点m条边的图,有q次询问,每次让你找出一条从x至y的路径,使得路径上经过的边的最小值最大,输出这个最大的最小值. 显然,经过的路径必然在这张图的最大生成树上. 我们求出这个图的最 ...

  3. TZOJ 4848 货车运输(最大生成树+倍增lca)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  4. [noip2013]货车运输(kruskal + 树上倍增)

    描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多 ...

  5. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

  6. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  7. NOIP2013 货车运输 (最大生成树+树上倍增LCA)

    死磕一道题,中间发现倍增还是掌握的不熟 ,而且深刻理解:SB错误毁一生,憋了近2个小时才调对,不过还好一遍AC省了更多的事,不然我一定会疯掉的... 3287 货车运输 2013年NOIP全国联赛提高 ...

  8. NOIP2013 货车运输

    3.货车运输 (truck.cpp/c/pas) [问题描述] A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货 ...

  9. Codevs3278[NOIP2013]货车运输

    3287 货车运输 2013年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond      题目描述 Description A 国有 ...

随机推荐

  1. python之约束, 异常处理, md5

    1. 类的约束 1. 写一个父类. 父类中的某个方法要抛出一个异常 NotImplementedError (重点) 2. 抽象类和抽象方法 # 语法 # from abc import ABCMet ...

  2. loadrunner 场景设计-目标场景设计

    场景设计-目标场景设计 by:授客 QQ:1033553122 A.   概述 Goals Types for Goal-Oriented Scenarios 在以目标为向导的场景中,定义你想实现的测 ...

  3. Android6.0源码下载编译刷入真机

    编译环境是Ubuntu12.04.手机nexus 5,编译安卓6.0.1源码并烧录到真机. 源码用的是科大的镜像:http://mirrors.ustc.edu.cn/aosp-monthly/,下载 ...

  4. Python使用np.c_和np.r_实现数组转换成矩阵

    # -*- coding: utf-8 -*-"""Created on Sat Jun 30 14:49:22 2018 @author: zhen"&quo ...

  5. 搭建iSCSI文件服务器故障转移群集

    故障转移群集(Failover Cluster)可以提供一个高可用性应用程序或服务的网络环境,本章将接受如何搭建iSCSI SAN文件服务器故障转移群集. 故障转移群集概述 我们可以将多台服务器组成一 ...

  6. linux E325: 注意 发现交换文件 "*.swp" 解决方法

    今天在linux里修改脚本文件时,不小心非正常关闭了脚本文件,再次编辑时,每次都提示 如下错误: E325: 注意发现交换文件 ".bqh.sh.swp" 所有者: root 日期 ...

  7. Mac命令行使用tree查看目录结构

    默认tree命令是无法使用的,可以使用homebrew install tree安装. 如果直接使用tree,查看的目录里面含有中文字符的目录或文件时会出现汉字不能显示的问题,可以使用tree -N查 ...

  8. jQuery搜索框自动补全功能插件实现-autocomplete.js

    最近用nodeclub实现股票的输入关键字自动补全股票信息进行搜索功能,原先用jQuery-ui,结果jQuery-ui库太大,所以考虑用其他插件,最终选择使用autocomplete.js,控件简单 ...

  9. trap命令的实战用法

    trap命令: trap命令是专用于捕捉信号的.比如像ctrl+c发送给终端的中断信号等等.在捕捉到信号之后,可以进行一系列的操作. 用法:trap  'COMMAND' INT COMMAND表示t ...

  10. ccf--20131203--最大矩形

    刚开始我是想依次计算i个相连矩形的面积,然后找出最大的面积,但是这种做法是时间复杂度是O(n*n),运行会超时. 这个是网上的一种做法,分别计算以第i个矩形作为高时,最大的面积.这就要以i为起始点,左 ...