Description

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

Input&Output

Input

第一行,n,m

第二行,n个整数,依次代表点权

第三至m+2行,每行两个整数u,v,表示u->v有一条有向边

Output

共一行,最大的点权之和。

Sample

Input

2 2
1 1
1 2
2 1

Output

2

Solution

对于一个联通块,一定是经过其中所有点是最优的,所以我们可以缩点,新的点权是联通块内的点权和。

缩点后会得到一个DAG,此时一定是从入度为零的点走到出度为零的点最优,证明略。所以记录一下拓扑序,再做DP即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<stack>
#define maxe 100005
#define maxn 10005
using namespace std;
struct edge{
    int to,nxt;
}e[maxe];
struct cedge{
    int to,nxt;
}ce[maxe];
int edgenum,cedgenum,lnk[maxn],clnk[maxn],k[maxn],a,b,n,m;
int dfn[maxn],low[maxn],dgr[maxn],cnt,num,blk[maxn],sz[maxn];
int f[maxn];
int hd=0,tl=1,q[maxn];
bool vis[maxn];
stack<int> st;
void add(int bgn,int end)
{
    e[++edgenum].to=end;
    e[edgenum].nxt=lnk[bgn];
    lnk[bgn]=edgenum;
}
void c_add(int bgn,int end)
{
    ce[++cedgenum].to=end;
    ce[cedgenum].nxt=clnk[bgn];
    clnk[bgn]=cedgenum;
    dgr[end]++;
}
void tarjan(int x)
{
    dfn[x]=low[x]=++cnt;
    vis[x]=1;st.push(x);
    for(int p=lnk[x];p;p=e[p].nxt){
        int y=e[p].to;
        if(!dfn[y]){
            tarjan(y);
            low[x]=min(low[x],low[y]);
        }
        else if(vis[y])
            low[x]=min(low[x],dfn[y]);
    }
    if(low[x]==dfn[x]){
        int now;
        num++;
        do{
            now=st.top();st.pop();
            vis[now]=0;
            blk[now]=num;
        }while(now!=x);
    }
}
void toposort()
{
    for(int i=1;i<=num;++i){
        f[i]=sz[i];
        if(!dgr[i])q[tl++]=i;
    }
    while(++hd<tl){
        int u=q[hd];
        for(int p=clnk[u];p;p=ce[p].nxt){
            int y=ce[p].to;
            if(!--dgr[y])q[tl++]=y;
        }
    }
}
void solve()
{
    hd=0;
    while(++hd<tl){
        int u=q[hd];
        for(int p=clnk[u];p;p=ce[p].nxt){
            int y=ce[p].to;
            f[y]=max(f[y],f[u]+sz[y]);
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
        scanf("%d",&k[i]);
    for(int i=1;i<=m;++i)
        scanf("%d%d",&a,&b),add(a,b);
    for(int i=1;i<=n;++i)
        if(!dfn[i])tarjan(i);
    for(int i=1;i<=n;++i){
        sz[blk[i]]+=k[i];
        for(int p=lnk[i];p;p=e[p].nxt){
            int y=e[p].to;
            if(blk[i]!=blk[y])c_add(blk[i],blk[y]);
        }
    }
    toposort();
    solve();
    int maxans=0;
    for(int i=1;i<=num;++i)
        maxans=max(maxans,f[i]);
    printf("%d\n",maxans);
    return 0;
}

[模板][Luogu3387] 缩点 - Tarjan, 拓扑+DP的更多相关文章

  1. P3387缩点(tarjan+拓扑排序+线性dp)

    题目描述 给定一个 n个点 m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入 ...

  2. P3387 【模板】缩点 tarjan

    虽说是模板题,但是竟然中间有dp的部分...先tarjan缩点,重新建图.然后记忆化搜索,搜索dag中的最小环. 题干: 题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值, ...

  3. 【模板】缩点(tarjan,DAG上DP)

    题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只 ...

  4. 【模板】缩点 tarjan+dp

    题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只 ...

  5. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  6. bzoj 2208: [Jsoi2010]连通数【tarjan+拓扑+dp】

    我总觉得枚举点bfs也行-- tarjan缩点,记一下每个scc的size,bitset压一下scc里的点,然后按拓扑倒序向上合并到达状态,然后加ans的时候记得乘size #include<i ...

  7. BZOJ 1093 强连通缩点+DAG拓扑DP

    缩点后在一个DAG上求最长点权链 和方案数 注意转移条件和转移状态 if (nowmaxn[x] > nowmaxn[v]) { ans[v] = ans[x]; nowmaxn[v] = no ...

  8. luogu P3387 【模板】缩点_拓扑排序

    还是很好些的. Code: #include <stack> #include <cstdio> #include <algorithm> #include < ...

  9. 【tarjan 拓扑排序 dp】bzoj1093: [ZJOI2007]最大半连通子图

    思维难度不大,关键考代码实现能力.一些细节还是很妙的. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于 ...

随机推荐

  1. epel扩展库的安装

    epel扩展库的安装 2017-10-09  18:07:48 个人原创,转载请注明作者,出处,否则追究法律责任 1,centos6.x系统中,必需安装epel-release-6-8.noarch. ...

  2. linux学习之路--(六)用户及权限详解

    计算机资源 用户 用户的容器,用户组 权限 进程时用户访问计算机的代理,操作文件的时候,文件本身有权限,进程本身也有权限 安全上下文(secure context) 权限: r, w, x 文件: r ...

  3. IPFS:Filecoin和复制证明

    这篇文章主要来讲一下Filecoin协议里面的复制证明(Proof of Replication),由于协议涉及到很多概念,可能看起来有点晕乎乎的,小编尽量把复杂问题简单化 ,力求给大家做大普及IPF ...

  4. 移动端HTML5性能优化

    移动端HTML5性能优化 [导读] 得益于智能手机的普及和各行各业互联网+的运动,移动端的市场占比疯狂增长. 2016年1月发布的2015年电商数据显示,2015年中国移动端网购交易额同比暴涨123 ...

  5. Elasticsearch就这么简单

    一.前言 最近有点想弄一个站内搜索的功能,之前学过了Lucene,后来又听过Solr这个名词.接着在了解全文搜索的时候就发现了Elasticsearch这个,他也是以Lucene为基础的. 我去搜了几 ...

  6. 用SQL语言操作数据

     使用T-SQL插入数据(一)SQL是什么?Structured   Query   Language  :结构化查询语言T-SQL:Transact-SQLT-SQL是SQL的增强版对功能进行了扩充 ...

  7. supervisor进程管理工具的使用

    supervisor是一款进程管理工具,当想让应用随着开机启动,或者在应用崩溃之后自启动的时候,supervisor就派上了用场. 广泛应用于服务器中,用于引导控制程序的启动 安装好superviso ...

  8. Python读取配置文件,并连接数据库SQL Server

    用配置文件保存固定的连接数据,改的话比较方便. 1.新建一个配置文件:SQlconfig.config,以数据库为例. 内容如下,当然也可以添加多个 [Database1] database=db_t ...

  9. eoLinker API-Shop 抓住区块链机遇,从这些API开始

    区块链是分布式存储.点对点传输.共识机制.加密算法等计算机技术的新型应用模式.所谓共识机制是区块链系统中实现不同节点之间建立信任.获取权益的数学算法. 区块链目前分为三类: 公有区块链(PublicB ...

  10. Vue中的v-cloak用法

    v-cloak 的作用和用法 用法: 这个指令保持在元素上直到关联实例结束编译.和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Must ...