O(logN)中logN的底数
转载:http://blog.csdn.net/jdbc/article/details/42173751
问题:
无论是计算机算法概论、还是数据结构书中,
关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多少。
解答:
算法中log级别的时间复杂度都是由于使用了分治思想,这个底数直接由分治的复杂度决定。
如果采用二分法,那么就会以2为底数,三分法就会以3为底数,其他亦然。
不过无论底数是什么,log级别的渐进意义是一样的。
也就是说该算法的时间复杂度的增长与处理数据多少的增长的关系是一样的。
我们先考虑O(logx(n))和O(logy(n)),x!=y,我们是在考虑n趋于无穷的情况。
求当n趋于无穷大时logx(n)/logy(n)的极限可以发现,极限等于lny/lnx,也就是一个常数,
也就是说,在n趋于无穷大的时候,这两个东西仅差一个常数。
所以从研究算法的角度log的底数不重要。
最后,结合上面,我也说一下关于大O的定义(算法导论28页的定义),
注意把这个定义和高等数学中的极限部分做比较,
显然可以发现,这里的定义正是体现了一个极限的思想,
假设我们将n0取一个非常大的数字,
显然,当n大于n0的时候,我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。
所以书上说写的O(logn)已经可以表达所有底数的对数了,就像O(n^2)一样。
没有非常严格的证明,不过我觉得这样说比较好理解,如果有兴趣证明,完全可以参照高数上对极限趋于无穷的证明。
O(logN)中logN的底数的更多相关文章
- Linux内核中的算法和数据结构
算法和数据结构纷繁复杂,但是对于Linux Kernel开发人员来说重点了解Linux内核中使用到的算法和数据结构很有必要. 在一个国外问答平台stackexchange.com的Theoretica ...
- Leetcode Lect4 二叉树中的分治法与遍历法
在这一章节的学习中,我们将要学习一个数据结构——二叉树(Binary Tree),和基于二叉树上的搜索算法. 在二叉树的搜索中,我们主要使用了分治法(Divide Conquer)来解决大部分的问题. ...
- 剑指Offer——算法复杂度中的O(logN)底数是多少
剑指Offer--算法复杂度中的O(logN)底数是多少 前言 无论是计算机算法概论.还是数据结构书中,关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多 ...
- 算法复杂度中的O(logN)底数是多少
前言 无论是计算机算法概论.还是数据结构书中,关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多少.算法中log级别的时间复杂度都是由于使用了分治思想,这 ...
- XVI Open Cup named after E.V. Pankratiev. GP of Ukraine
A. Associated Vertices 首先求出SCC然后缩点,第一次求出每个点能到的点集,第二次收集这些点集即可,用bitset加速,时间复杂度$O(\frac{nm}{64})$. #inc ...
- 《数据结构与算法分析:C语言描述_原书第二版》CH2算法分析_课后习题_部分解答
对于一个初学者来说,作者的Solutions Manual把太多的细节留给了读者,这里尽自己的努力给出部分习题的详解: 不当之处,欢迎指正. 1. 按增长率排列下列函数:N,√2,N1.5,N2,N ...
- POJ2104 K-th number 函数式线段树
很久没打代码了,不知道为什么,昨天考岭南文化之前突然开始思考起这个问题来,这个问题据说有很多种方法,划分树什么的,不过对于我现在这种水平还是用熟悉的线段树做比较好.这到题今年8月份的时候曾经做过,那个 ...
- 《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅴ
命题Q.对于一个含有N个元素的基于堆叠优先队列,插入元素操作只需要不超过(lgN + 1)次比较,删除最大元素的操作需要不超过2lgN次比较. 证明.由命题P可知,两种操作都需要在根节点和堆底之间移动 ...
- 树:BST、AVL、红黑树、B树、B+树
我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操 ...
随机推荐
- Selenium webdriver实现截图功能
可参考http://www.cnblogs.com/tobecrazy/p/3599568.html Webdriver截图时,需要引入: import java.io.File; import ja ...
- [UWP]理解ControlTemplate中的VisualTransition
1. 前言 VisualTransition是控件模板中的重要组成部分,无论是自定义控件或者修改控件样式都会接触到VisualTransition.明明这么重要,博客园上好像都没多少关于VisualT ...
- 共享MFC每周时间选择控件代码
自己写的周时间选择控件,原理就是在Static上用GDI画图. 支持选择每周内每一天内的任意时间段,可以任意拖动修改时间段,任意合并时间段 效果如下图: VS2012代码下载:https://gith ...
- 解析xml文件的四种方式
什么是 XML? XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没 ...
- python 一篇就能理解函数基础
一,函数是什么? 函数一词来源于数学,但编程中的「函数」概念,与数学中的函数是有很大不同的,具体区别,我们后面会讲,编程中的函数在英文中也有很多不同的叫法.在BASIC中叫做subroutine(子过 ...
- Mycat 分片规则详解--单月小时分片
实现方式:单月内按照小时拆分,最小粒度是小时,一天最多可以有24个分片,最少1个分片,下个月从头开始循环 优点:使数据按照小时来进行分时存储,颗粒度比日期(天)分片要小,适用于数据采集类存储分片 缺点 ...
- ELK学习笔记(二)-HelloWorld实例+Kibana介绍
这次我们通过一个最简单的HelloWolrd来了解一下ELK的使用. 进入logstash的config目录,创建stdin.conf 文件. input{ stdin{ } } output{ st ...
- 慢查询日志分析(mysql)
开启慢查询日志之后,慢查询sql会被存到数据库系统表mysql.slow_log或是文件中,可参考.有两个工具可以帮助我们分析输出报告,分别是mysqldumpslow和pt-query-digest ...
- Java读取word中表格
因为要新建一个站,公司要把word表格的部分行列存到数据库中.之前用java操作过excel,本来打算用java从word表格中读取数据,再存到数据库中,结果因为权限不够,无法访问公司要写的那个数据库 ...
- Alpha冲刺No.1
冲刺Day1 一.站立式会议计划 全体成员先安装好Android Studio,mysql,以及navicat for MySQL 将上述软件调试至可运行状态 自主把玩安卓虚拟机,mysql 通过一些 ...